
Hierarchical Reinforcement Learning for Robot
Navigation using the Intelligent Space Concept

L. A. Jeni, Z. Istenes P. Korondi
Eötvös Loránd University Budapest University of Technology and Economics

Faculty of Informatics Department of Automation and Applied Informatics
Pázmány Péter st., 1/c – 1117 Budapest, Hungary Goldmann György tér, 3 – 1111 Budapest, Hungary

{jedi,istenes}@inf.elte.hu korondi@elektro.get.bme.hu

H. Hashimoto
University of Tokyo

Institute of Industrial Science
4-6-1 Komaba, Meguro-ku, Tokyo, Japan, 153-8505

hashimoto@iis.u-tokyo.ac.jp

Abstract – Navigation in an unknown environment is a
difficult task, because mobile robots need topological maps in
order to operate in the environment. Another fundamental
problem is that robot programming is a time-consuming
process, so it is better to use a learning method with
reinforcement. In previous work we proposed a learning
framework, which used the capability of the Intelligent Space
in order to build a topological map of the environment. In this
paper we present an extension of this framework to
decompose the learning problem into sub-problems, which
can be learned faster.

I INTRODUCTION
Navigation in a completely unknown environment is still

a hard problem, because mobile robots need topological
maps in order to operate in the environment. Building a
map of the environment while also using it for learning is of
prime importance for mobile robots but until recently, it has
only been confined to small-scale environments.

Reinforcement learning is a machine learning paradigm
that is well-suited use on mobile robots. The main problem,
which arises when reinforcement learning is applied to
larger scale environment, is referred to as the state space
explosion. The learning time grows at least as fast as the
size of the state space, so the learning time will grow
exponentially in a larger domain.

One way to overcome this problem is to adopt a divide
and conquer strategy. Rather than attempting to solve the
whole problem at once, a decomposition is performed to
create a hierarchical structure of sub-problems. These
algorithms are known as Hierarchical Reinforcement
Learning methods.

It is worth mentioning here the hybrid learning
architectures, for example the Layered learning [1], which
is successfully applied to learn low-level behaviors for a
Robocup team [2]. Temporal abstraction, like H-DYNA [3]
and HAMs [4], means the decomposition of a task into a set
of sequential subtasks, which can be used to complete the
task. The MAXQ decomposition [5] and ALisp [6] methods
combines Temporal Abstraction with State Abstraction to
improve the learning process. There has been some research
into determining useful task decompositions without prior
knowledge [7,8]. A recently proposed approach, called
HEXQ [9], exploits a factored state representation and
builds a task hierarchy using sorted state variables.

Fig. 1. Overview of the system.

In previous work we proposed a learning framework,
which used the capability of the Intelligent Space in order
to build a topological map of the environment [10]. In this
paper we present an extension of this framework, which can
create a hierarchy in the learning process. This approach is
a generalization of the HEXQ method in some ways. It uses
an interconnection function to build a task hierarchy.

An overview of the system can be seen in Fig. 1. The
Intelligent Space can recognize and track the path of mobile
robots and we can use this capability to create a topological
map of the environment. We can use this feature to make a
hierarchical generalization in the learning process by
abstraction. The first three components of the system are
described in detail in [10].

Fig. 2. Intelligent Space Concept.

This paper is organized as follows. The next section
introduces the Intelligent Space concept. Section 3 briefly
describes reinforcement learning and the TD-learning
method, which is used in the framework. Section 4
describes the hierarchical decomposition method. In
Section 5 we give an overview of the test environment and
Section 6 shows experiment results.

II THE INTELLIGENT SPACE
Conventionally, there is a trend to increase the

intelligence of a robot operating in a limited area. The
Intelligent Space concept (see Fig. 2) is the opposite of this
trend [11]. The Intelligent Space is a space (room or
corridor), which has distributed sensory intelligence
(various sensors, such as cameras and microphones with
intelligence) actuators (projectors, speakers, and mobile
robots) to manipulate the space. A robot without any sensor
or own intelligence can operate in an Intelligent Space. In
the conventional solution the robot measures, calculates and
decides. The heart of the iSpace concept is that the robots
must not calculate or make decision. They just carry out,
execute commands getting information from the distributed
devices called Ubiquitous Sensory Intelligence which is
realized by Distributed Intelligent Networked Devices
(DIND).

A DIND is consisting of three basic elements. These are
the sensor, the computer and the communication device. In
the Intelligent Space DINDs monitor the space, acquire data
and share them trough the network. Since robots in the
Intelligent Space are equipped with wireless network
devices, DINDs and robots together organize a network.

The basic concept of Intelligent Space has extended with
its development. The iSpace is a system for supporting
people in it. Events, which happen in it, are understood.
However, to support people physically, the intelligent space
needs robots to handle real objects. Mobile robots become
physical agents of the Intelligent Space and they execute
tasks in the physical domain to support people in the space.
Task includes movement of objects, providing help to aged
or disabled persons etc. Thus, the Intelligent Space is an
environmental system, which supports people in it
electrically and physically. Another interesting application
here is that the room can serve as a high level, context
sensitive interface to robots. The Intelligent Space is a
platform to which desultory technologies are installed.

The ongoing research activities about Intelligent Space
achieved several results and solutions in the field of motion
control [12], feature extraction [13] and recognition and
tracking the path of moving objects [14].

Fig. 3. Basic components of a reinforcement learning problem.

Recent research focuses on image recognition and on
solutions that are developed on the analogy of the human
vision processing [15].

III REINFORCEMENT LEARNING

A Markov Decision Processes
The easiest to describe the concept of a reinforcement

learning problem is by considering an agent situated in
some environment as shown in Fig. 3. The agent can detect
information about the state of the environment. The agent
can also affect the environment by taking one of a set of
actions available to it. After each action is taken, the agent
receives a feedback signal from the environment called the
reward, which determines how well the agent is performing
the target task in the environment. The goal in a
reinforcement learning problem is to learn which action to
take in each state to maximize some optimality criterion
based on the rewards received over time. Some examples of
optimality criteria are average reward per time step, total
return over a finite horizon and total discounted return.

A reinforcement learning problem can be formalized as a
Markov Decision Process [16] or MDP. An MDP is
described by a quadruple <S, A, T, R> where:

• S is the set of possible states.
• A is the set of available actions.
• T(s,a,s’) → [0,1] is the transition function defining

the probability that taking action a in state s will
result in a transition to state s’.

• R(s,a,s’) → R is the reward function defining the
reward received when a transition is made.

A particular strategy for choosing actions in an MDP is
known as a policy, and is specified formally as a function

() []1,0, →asπ , which defines the probability of selecting
each action in a given state.

For some policy π and a discount factor [)1,0∈γ , the
value function ()sVπ can be defined as the expected total
discounted return when starting in state s and using policy π
to choose actions:

 () () () ()[].''),(,'),(,
'
∑ +=
s

sVsssRsssTsV ππ γππ (1)

Intuitively, the value function Vπ(s) represents how good
it is for an agent to be in a particular state of the MDP,
given that subsequent actions are to be chosen using policy
π. The discount factor is used to determine the relative

worth of future rewards in comparison to rewards available
immediately in the current state. The value of γ is chosen to
be less than 1 to give Vπ a finite value for each state. The
optimal policy π* is the policy which, according to the
optimality criterion, performs better in the environment
than any other policy π. The formal definition of π* is:

 () () .,max* SssVsV ∈∀= π

π

π (2)

While our goal is to find π*, MDP solution methods are
often based on a calculation of the value function for the
optimal policy Vπ*, also denoted by V*. Once V* has been
calculated, the parameters of the MDP can be used to
calculate π* as well:

 () () () ()[]∑ +=
'

* .'',,',,maxarg*
sa

sVsasRsasTs γπ (3)

B Temporal Difference Learning
The proposed learning framework uses Temporal

Difference (TD) learning [18] to learn the value function Vπ
for the policy π being followed by the learning agent. The
Temporal Difference method is a learning-method driven
by the difference between two successive state values to
adjust former state values, which decrease the difference
between all two successive state values:

 () () ()() ()()tktktktktk sVsVrsVsV 1111 −+−− −++= γα (4)

In (4) rt is the immediate reward and αk is a learning rate
series that sums up to infinity, but whose squares sum up to
a finite value. This method guaranteed converges to the
optimal policy within a finite amount of evaluation.

In the framework TD is implemented using an eligibility
trace. The eligibility trace for a state s is a value es which
determines the extent to which s should be updated using
the value of the current state st. At every time step each of
the es values is updated as follows:





=+
≠

←
ts

ts
s ssife

ssife
e

1γλ
γλ

 (5)

Once the eligibility trace values have been updated, the
current estimate of each state value can also be updated:

() ()

() () ts

tttt

esVsV
sVsVr

δα
γδ

+←
−+← ++ 11 (6)

Furthermore we used ε-greedy [17] strategy (with ε =
0.1) to balancing exploration and exploitation in the
learning process. This is a simple but effective mechanism
for trading off the exploration of the random policy against
the exploitation of the greedy policy. There is a small
probability ε at each time step of picking an action at
random, otherwise the greedy policy is followed. With a
good choice of the value for ε, the policy will quickly
converge to one which selects the optimal action with
probability (1-ε).

Fig. 4. An interconnecting state in a gridworld.

This state connects two rooms.

IV HIERARCHICAL DECOMPOSITION
The main problem, which arises when reinforcement

learning is applied to a larger scale problem, is referred to
as state space explosion. Without any prior knowledge,
reinforcement learning is almost certainly infeasible for
state spaces above a certain size.

We can modify the original reinforcement learning
problem to use an interconnection function to decompose
the large state space. This function represents our prior
knowledge about the problem in a formal way. We can
describe this modified problem by a triple <S, A, i>, where i
is the interconnection function.

At first, we describe the interconnection function and
show how it can be used to decompose the problem, and
then provide a method for learning on the decomposed
problem.

A The interconnection function
The interconnection function defines the probability that

a given state is a connecting state, which connects two
partitions of problem. It maps the state of the environment
to a single number, a probability value. This represents our
prior knowledge about the problem.

 [] Sssi ∈→ ,1,0)((7)

We can say “bottleneck” states in the state space are
interconnecting states, because they separate larger
partitions. For example, in a gridworld problem where the
world consist rooms and passages, the passage states are
interconnecting states, because they connect two rooms (see
Fig. 4).

If we have some exact knowledge about the problem (for
example if we can recognize passages from the current
state), we can explicitly define this function. Otherwise we
need to approximate it by exploring the state space.

In the framework we used a topological map to define
this function. The next section describes the details.

B Learning Process using the Interconnection Function
In the first part of the learning process the algorithm

explores the state space by starting several trajectories. If
we reach an interconnecting state (a state where i(s) > δ,
where δ is a constant) we create a new abstract state, which
contains the states of the trajectory. If we found a path
between two abstract states, which not contains a
connecting state, then we merge the two states. At the end
of this stage, we have a set of abstract states and each state
represents a partition of the original state space.

Fig. 5. Four steps from the abstraction process.

Furthermore each abstract state contains one or more
connecting states. In the second part of the learning process
the algorithm learns partial policies on the partitions
represented by the abstract states (see Fig. 5).

Let M denote the number of abstract states. If an abstract
state has Ni interconnecting states, then the algorithm learns
Ni optimal policies on that partition (one for each
connecting state or “passage”):

 [] []i
i
k NkMi ..1,..1, ∈∈π (8)

Let i
kA be a macro action, which represents the shortest

path on the ith partition to the kth passage of this partition
based on the optimal i

kπ policy. Let Si denote the ith
abstract state. With this notation we can define a Semi-
MDP over the abstract states:

 { } { } ',',......,...... RTAS ii
k (9)

We can define the T’ transition function using the
connectivity information of the partitions.

In the final part of the learning process the system learns
the optimal π’ policy for this SMDP. This problem has a
much smaller state space than the original.

V OVERVIEW OF THE TEST ENVIRONMENT
For testing the learning algorithm, we used the image

processing module of our robot soccer test framework
developed at the Eötvös Loránd University. This provided
us a good background for implementing the algorithm.

A Building topological map using the iSpace concept
To build the topological map of the environment the

system propagates mobile robots in the space and tracks
their movement.

Fig. 6. The test scene in our lab (left) and

the walkable area map (right).

Fig. 7. The mobile robot. The ultrasonic sensor is

located on the front side.

The robot recognition is done in two steps. First, the area
of the moving objects is separated from the static
background. Second, colored, square-shaped labels on the
top of the robot are located. This colored label is proposed
to recognize the orientation of the robot. Taking the images
of several cameras we can then calculate the spatial position
of the robot. The positions are dilated with a morphological
operator to obtain a connected area map.

Our experiments were performed using a small test scene
built from polystyrene sheets. The picture of the scene and
the walkable area map can be seen in Fig. 6.

B The mobile robot
We used a unicycle-type wheeled LEGO robot for the

simulation (see Fig. 7). This robot is based on a 32-bit
ARM7 microcontroller controlled mobile platform (the
NXT brick), which can communicate with the framework
via Bluetooth.

It has two motor-powered wheels and it is equipped with
an ultrasonic sensor, located on the front side, to measure
the distance of obstacles. This ultrasonic sensor is quite
accurate within small distances (below 20 cm), and the
minimum range is approximately 3 cm, so it is suitable for
our application.

The system recognizes the position and orientation of the
robot, and queries the ultrasonic sensor for the distance of
obstacles. Then using these data it creates the walkable map
of the room.

Fig. 8. The eroded (left) and dilatated (center) maps.
The final decomposed map can be seen on the right.

C Decomposition of the map
In the next step the system decomposes the whole map

into connected sub-maps. This decomposition will be the
base of the temporal abstraction in the learning system.

For the decomposition we used two morphological
operators. First, we eroded the walkable area map to break
it into partitions, and then a dilatation operator was used to
connect these parts again. At the end of this process we can
allocate the passages between the partitions. The
decomposition steps can be seen in Fig. 8.

VI EXPERIMENTAL RESULTS
In this section we present some experimental results

comparing the flat TD-learning and our hierarchical
learning algorithm.

Before the walkable area map is given to the learning
system, the system discretizes the map into squares, to
reduce computational complexity of the learning. Each
square represents a state in the learning problem.

For the hierarchical algorithm we used the passages on
the decomposed map as the interconnection function in the
following way:





=
otherwise,0

passageaonlies,1
)(

s
si (10)

In the flat problem the agent starts from the middle of
area A, and gets a reward of +10000 for reaching the
middle of area G (goal position). The agent can move in the
four directions on the discretized map, with a reward of -1
on every step that does not end at the goal state.
Furthermore the agent gets a reward of -5 for each bounce.

In the hierarchical problem the agent starts from a
random position on each sub-map, and gets a reward of
+100 for reaching a passage on that partition (or the goal
position of area G). On the second level of the hierarchy,
the agent gets a reward of +100 for reaching the goal state
and a reward of -1 on every step that does not end at the
goal state.

Fig. 9 displays the learning curves of the flat and
hierarchical algorithms obtained by averaging over 100
runs. With the hierarchical decomposition it is possible to
learn the task in very few learning episodes. The curve of
the flat learner stabilizes around a performance of 70.9 after
41 episodes. The curve of the hierarchical method stabilizes
around a performance of 70.3 after 13 episodes.

The results presented in this paper depend on the
parameters of the used algorithm. In this example we set the
trace-decay parameter λ to 0.95 and the discount factor γ to
0.9. Furthermore we used ε = 0.1 for the ε-greedy strategy.

Fig. 9. Learning curves of the flat and hierarchical algorithms.

VII CONCLUSION
In this paper we have described a hierarchical

reinforcement learning method, which can reduce the
computational complexity of the learning problem. The
results of the simulations illustrate that this algorithm
performs much better than the flat learner algorithm, but it
requires some prior knowledge about the problem.

The final goal is to create the learning hierarchy without
any prior knowledge about the problem. In the future we
need to investigate the possibility of approximating the
interconnection function by exploring the state space.

Acknowledgments
The authors wish to thank the National Science Research

Fund (OTKA K62836), Control Research Group and János
Bolyai Research Scholarship of Hungarian Academy of
Science for their financial support and the support
stemming from the Intergovernmental S & T Cooperation
Program.

REFERENCES
[1] P. Stone, “Layered Learning in Multi-Agent Systems.” PhD thesis,

Carnegie Mellon University, December 1998.
[2] H. Kitano, editor. RoboCup-97: Robot Soccer World Cup I.

Springer Verlag, Berlin, 1998.
[3] S. P. Singh, “Reinforcement learning with a hierarchy of abstract

models.” In Proceedings of the AAAI, 1992, pp 202–207.
[4] R. Parr and S. Russell, “Reinforcement learning with hierarchies of

machines.” In Advances in Neural Information Processing Systems,
volume 10. The MIT Press, 1997.

[5] T. G. Dietterich,. ”Hierarchical reinforcement learning with the
MAXQ value function decomposition.” Journal of Artificial
Intelligence Research, 13, 2000, pp227–303.

[6] D. Andre, “Programmable Reinforcement Learning Agents.” PhD
thesis, U.C. Berkeley, 2003.

[7] S. B. Thrun and A. Schwartz, „Finding structure in reinforcement
learning.” In Advances in Neural Information Processing Systems,
volume 7, The MIT Press, 1995, pp 385–392.

[8] A. K. McCallum, “Reinforcement Learning with Selective
Perception and Hidden State.” PhD thesis, University of Rochester,
Rochester, NY, 1996.

[9] B. Hengst, "Discovering Hierarchy in Reinforcement Learning",
PhD thesis, Computer Science and Engineering, University of New
South Wales, Sydney Australia, 2003.

[10] L. A. Jeni, Z. Istenes, P. Korondi, H. Hashimoto, “Mobile Agent
Control in Intelligent Space using Reinforcement Learning,” in
Proc. 7th International Symposium of Hungarian Researchers on
Computational Intelligence (HUCI’06), 2006, pp. 201–210.

[11] P. Korondi, H. Hashimoto, “INTELLIGENT SPACE, AS AN
INTEGRATED INTELLIGENT SYSTEM,” Keynote paper of
International Conference on Electrical Drives and Power
Electronics, Proceedings, 2003, pp. 24-31.

[12] P. T. Szemes, “Human Observation–based Motion Control
Strategies in Intelligent Space,” PhD Thesis, Tokyo, 2005.

[13] K. Morioka, H. Hashimoto, “Color Appearance Based Object
Identification in Intelligent Space,” The 8th IEEE International
Workshop on Advanced Motion Control, 2004, pp. 505-510.

[14] B. Reskó; P. Szemes; P. Korondi; Péter Zoltán Baranyi; H.
Hashimoto, "Artificial Neural Network based Object Tracking,"
SICE Conference, 2004, pp 1398-1403.

[15] Z. Petres, B. Reskó, P. Baranyi, H. Hashimoto, "Biology inspired
intelligent contouring vision device in intelligent space," in Proc. of
the 6th international symposium on advanced intelligent systems.
Yeosu, 2005. pp 865-870.

[16] R. E. Bellman, “Dynamic Programming.,” Princeton University
Press, Princeton, NJ, 1957.

[17] C. J. C. H. Watkins, “Learning from Delayed Rewards,” PhD
Thesis, King’s College, Cambridge, 1989.

[18] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, 1988, 3:9–44.

