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Abstract – Navigation in an unknown environment is a 
difficult task, because mobile robots need topological maps in 
order to operate in the environment. Another fundamental 
problem is that robot programming is a time-consuming 
process, so it is better to use a learning method with 
reinforcement. In previous work we proposed a learning 
framework, which used the capability of the Intelligent Space 
in order to build a topological map of the environment. In this 
paper we present an extension of this framework to 
decompose the learning problem into sub-problems, which 
can be learned faster. 

I INTRODUCTION 
Navigation in a completely unknown environment is still 

a hard problem, because mobile robots need topological 
maps in order to operate in the environment. Building a 
map of the environment while also using it for learning is of 
prime importance for mobile robots but until recently, it has 
only been confined to small-scale environments. 

Reinforcement learning is a machine learning paradigm 
that is well-suited use on mobile robots. The main problem, 
which arises when reinforcement learning is applied to 
larger scale environment, is referred to as the state space 
explosion. The learning time grows at least as fast as the 
size of the state space, so the learning time will grow 
exponentially in a larger domain. 

One way to overcome this problem is to adopt a divide 
and conquer strategy. Rather than attempting to solve the 
whole problem at once, a decomposition is performed to 
create a hierarchical structure of sub-problems. These 
algorithms are known as Hierarchical Reinforcement 
Learning methods. 

It is worth mentioning here the hybrid learning 
architectures, for example the Layered learning [1], which 
is successfully applied to learn low-level behaviors for a 
Robocup team [2]. Temporal abstraction, like H-DYNA [3] 
and HAMs [4], means the decomposition of a task into a set 
of sequential subtasks, which can be used to complete the 
task. The MAXQ decomposition [5] and ALisp [6] methods 
combines Temporal Abstraction with State Abstraction to 
improve the learning process. There has been some research 
into determining useful task decompositions without prior 
knowledge [7,8]. A recently proposed approach, called 
HEXQ [9], exploits a factored state representation and 
builds a task hierarchy using sorted state variables. 

 

 
Fig. 1. Overview of the system. 

In previous work we proposed a learning framework, 
which used the capability of the Intelligent Space in order 
to build a topological map of the environment [10]. In this 
paper we present an extension of this framework, which can 
create a hierarchy in the learning process. This approach is 
a generalization of the HEXQ method in some ways. It uses 
an interconnection function to build a task hierarchy. 

An overview of the system can be seen in Fig. 1. The 
Intelligent Space can recognize and track the path of mobile 
robots and we can use this capability to create a topological 
map of the environment. We can use this feature to make a 
hierarchical generalization in the learning process by 
abstraction. The first three components of the system are 
described in detail in [10]. 



 
Fig. 2. Intelligent Space Concept. 

This paper is organized as follows. The next section 
introduces the Intelligent Space concept. Section 3 briefly 
describes reinforcement learning and the TD-learning 
method, which is used in the framework. Section 4 
describes the hierarchical decomposition method. In 
Section 5 we give an overview of the test environment and 
Section 6 shows experiment results. 

II THE INTELLIGENT SPACE 
Conventionally, there is a trend to increase the 

intelligence of a robot operating in a limited area. The 
Intelligent Space concept (see Fig. 2) is the opposite of this 
trend [11]. The Intelligent Space is a space (room or 
corridor), which has distributed sensory intelligence 
(various sensors, such as cameras and microphones with 
intelligence) actuators (projectors, speakers, and mobile 
robots) to manipulate the space. A robot without any sensor 
or own intelligence can operate in an Intelligent Space. In 
the conventional solution the robot measures, calculates and 
decides. The heart of the iSpace concept is that the robots 
must not calculate or make decision. They just carry out, 
execute commands getting information from the distributed 
devices called Ubiquitous Sensory Intelligence which is 
realized by Distributed Intelligent Networked Devices 
(DIND). 

A DIND is consisting of three basic elements. These are 
the sensor, the computer and the communication device. In 
the Intelligent Space DINDs monitor the space, acquire data 
and share them trough the network. Since robots in the 
Intelligent Space are equipped with wireless network 
devices, DINDs and robots together organize a network. 

The basic concept of Intelligent Space has extended with 
its development. The iSpace is a system for supporting 
people in it. Events, which happen in it, are understood. 
However, to support people physically, the intelligent space 
needs robots to handle real objects. Mobile robots become 
physical agents of the Intelligent Space and they execute 
tasks in the physical domain to support people in the space. 
Task includes movement of objects, providing help to aged 
or disabled persons etc. Thus, the Intelligent Space is an 
environmental system, which supports people in it 
electrically and physically. Another interesting application 
here is that the room can serve as a high level, context 
sensitive interface to robots. The Intelligent Space is a 
platform to which desultory technologies are installed. 

The ongoing research activities about Intelligent Space 
achieved several results and solutions in the field of motion 
control [12], feature extraction [13] and recognition and 
tracking the path of moving objects [14].  

 
Fig. 3. Basic components of a reinforcement learning problem. 

Recent research focuses on image recognition and on 
solutions that are developed on the analogy of the human 
vision processing [15]. 

III REINFORCEMENT LEARNING 

A Markov Decision Processes 
The easiest to describe the concept of a reinforcement 

learning problem is by considering an agent situated in 
some environment as shown in Fig. 3. The agent can detect 
information about the state of the environment. The agent 
can also affect the environment by taking one of a set of 
actions available to it. After each action is taken, the agent 
receives a feedback signal from the environment called the 
reward, which determines how well the agent is performing 
the target task in the environment. The goal in a 
reinforcement learning problem is to learn which action to 
take in each state to maximize some optimality criterion 
based on the rewards received over time. Some examples of 
optimality criteria are average reward per time step, total 
return over a finite horizon and total discounted return. 

A reinforcement learning problem can be formalized as a 
Markov Decision Process [16] or MDP. An MDP is 
described by a quadruple <S, A, T, R> where: 

• S is the set of possible states. 
• A is the set of available actions. 
• T(s,a,s’) → [0,1] is the transition function defining 

the probability that taking action a in state s will 
result in a transition to state s’. 

• R(s,a,s’) → R is the reward function defining the 
reward received when a transition is made. 

A particular strategy for choosing actions in an MDP is 
known as a policy, and is specified formally as a function 

( ) [ ]1,0, →asπ , which defines the probability of selecting 
each action in a given state. 

For some policy π and a discount factor [ )1,0∈γ , the 
value function ( )sVπ  can be defined as the expected total 
discounted return when starting in state s and using policy π 
to choose actions: 
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Intuitively, the value function Vπ(s) represents how good 
it is for an agent to be in a particular state of the MDP, 
given that subsequent actions are to be chosen using policy 
π. The discount factor is used to determine the relative 



worth of future rewards in comparison to rewards available 
immediately in the current state. The value of γ is chosen to 
be less than 1 to give Vπ a finite value for each state. The 
optimal policy π* is the policy which, according to the 
optimality criterion, performs better in the environment 
than any other policy π. The formal definition of π* is: 

 ( ) ( ) .,max* SssVsV ∈∀= π

π

π  (2) 

While our goal is to find π*, MDP solution methods are 
often based on a calculation of the value function for the 
optimal policy Vπ*, also denoted by V*. Once V* has been 
calculated, the parameters of the MDP can be used to 
calculate π* as well: 
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B Temporal Difference Learning 
The proposed learning framework uses Temporal 

Difference (TD) learning [18] to learn the value function Vπ 
for the policy π being followed by the learning agent. The 
Temporal Difference method is a learning-method driven 
by the difference between two successive state values to 
adjust former state values, which decrease the difference 
between all two successive state values: 

 ( ) ( ) ( )( ) ( )( )tktktktktk sVsVrsVsV 1111 −+−− −++= γα  (4) 

In (4) rt is the immediate reward and αk is a learning rate 
series that sums up to infinity, but whose squares sum up to 
a finite value. This method guaranteed converges to the 
optimal policy within a finite amount of evaluation. 

In the framework TD is implemented using an eligibility 
trace. The eligibility trace for a state s is a value es which 
determines the extent to which s should be updated using 
the value of the current state st. At every time step each of 
the es values is updated as follows: 
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Once the eligibility trace values have been updated, the 
current estimate of each state value can also be updated: 
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Furthermore we used ε-greedy [17] strategy (with ε = 
0.1) to balancing exploration and exploitation in the 
learning process. This is a simple but effective mechanism 
for trading off the exploration of the random policy against 
the exploitation of the greedy policy. There is a small 
probability ε at each time step of picking an action at 
random, otherwise the greedy policy is followed. With a 
good choice of the value for ε, the policy will quickly 
converge to one which selects the optimal action with 
probability (1-ε). 

 

 
Fig. 4. An interconnecting state in a gridworld.  

This state connects two rooms. 

IV HIERARCHICAL DECOMPOSITION 
The main problem, which arises when reinforcement 

learning is applied to a larger scale problem, is referred to 
as state space explosion. Without any prior knowledge, 
reinforcement learning is almost certainly infeasible for 
state spaces above a certain size. 

We can modify the original reinforcement learning 
problem to use an interconnection function to decompose 
the large state space. This function represents our prior 
knowledge about the problem in a formal way. We can 
describe this modified problem by a triple <S, A, i>, where i 
is the interconnection function. 

At first, we describe the interconnection function and 
show how it can be used to decompose the problem, and 
then provide a method for learning on the decomposed 
problem. 

A The interconnection function 
The interconnection function defines the probability that 

a given state is a connecting state, which connects two 
partitions of problem. It maps the state of the environment 
to a single number, a probability value. This represents our 
prior knowledge about the problem. 

 [ ] Sssi ∈→ ,1,0)(  (7) 

We can say “bottleneck” states in the state space are 
interconnecting states, because they separate larger 
partitions. For example, in a gridworld problem where the 
world consist rooms and passages, the passage states are 
interconnecting states, because they connect two rooms (see 
Fig. 4). 

If we have some exact knowledge about the problem (for 
example if we can recognize passages from the current 
state), we can explicitly define this function. Otherwise we 
need to approximate it by exploring the state space. 

In the framework we used a topological map to define 
this function. The next section describes the details. 

B Learning Process using the Interconnection Function 
In the first part of the learning process the algorithm 

explores the state space by starting several trajectories. If 
we reach an interconnecting state (a state where i(s) > δ, 
where δ is a constant) we create a new abstract state, which 
contains the states of the trajectory. If we found a path 
between two abstract states, which not contains a 
connecting state, then we merge the two states. At the end 
of this stage, we have a set of abstract states and each state 
represents a partition of the original state space.  



 
Fig. 5. Four steps from the abstraction process. 

Furthermore each abstract state contains one or more 
connecting states. In the second part of the learning process 
the algorithm learns partial policies on the partitions 
represented by the abstract states (see Fig. 5). 

Let M denote the number of abstract states. If an abstract 
state has Ni interconnecting states, then the algorithm learns 
Ni optimal policies on that partition (one for each 
connecting state or “passage”): 

 [ ] [ ]i
i
k NkMi ..1,..1, ∈∈π  (8) 

Let i
kA be a macro action, which represents the shortest 

path on the ith partition to the kth passage of this partition 
based on the optimal i

kπ  policy. Let Si denote the ith 
abstract state. With this notation we can define a Semi-
MDP over the abstract states: 

 { } { } ',',......,...... RTAS ii
k  (9) 

We can define the T’ transition function using the 
connectivity information of the partitions. 

In the final part of the learning process the system learns 
the optimal π’ policy for this SMDP. This problem has a 
much smaller state space than the original. 

V OVERVIEW OF THE TEST ENVIRONMENT 
For testing the learning algorithm, we used the image 

processing module of our robot soccer test framework 
developed at the Eötvös Loránd University. This provided 
us a good background for implementing the algorithm. 

A Building topological map using the iSpace concept 
To build the topological map of the environment the 

system propagates mobile robots in the space and tracks 
their movement.  

 
Fig. 6. The test scene in our lab (left) and  

the walkable area map (right). 

 
Fig. 7. The mobile robot. The ultrasonic sensor is  

located on the front side. 

The robot recognition is done in two steps. First, the area 
of the moving objects is separated from the static 
background. Second, colored, square-shaped labels on the 
top of the robot are located. This colored label is proposed 
to recognize the orientation of the robot. Taking the images 
of several cameras we can then calculate the spatial position 
of the robot. The positions are dilated with a morphological 
operator to obtain a connected area map.  

Our experiments were performed using a small test scene 
built from polystyrene sheets. The picture of the scene and 
the walkable area map can be seen in Fig. 6. 

B The mobile robot 
We used a unicycle-type wheeled LEGO robot for the 

simulation (see Fig. 7). This robot is based on a 32-bit 
ARM7 microcontroller controlled mobile platform (the 
NXT brick), which can communicate with the framework 
via Bluetooth. 

It has two motor-powered wheels and it is equipped with 
an ultrasonic sensor, located on the front side, to measure 
the distance of obstacles. This ultrasonic sensor is quite 
accurate within small distances (below 20 cm), and the 
minimum range is approximately 3 cm, so it is suitable for 
our application. 

The system recognizes the position and orientation of the 
robot, and queries the ultrasonic sensor for the distance of 
obstacles. Then using these data it creates the walkable map 
of the room. 

 

Fig. 8. The eroded (left) and dilatated (center) maps.  
The final decomposed map can be seen on the right. 



C Decomposition of the map 
In the next step the system decomposes the whole map 

into connected sub-maps. This decomposition will be the 
base of the temporal abstraction in the learning system. 

For the decomposition we used two morphological 
operators. First, we eroded the walkable area map to break 
it into partitions, and then a dilatation operator was used to 
connect these parts again. At the end of this process we can 
allocate the passages between the partitions. The 
decomposition steps can be seen in Fig. 8. 

VI EXPERIMENTAL RESULTS 
In this section we present some experimental results 

comparing the flat TD-learning and our hierarchical 
learning algorithm.  

Before the walkable area map is given to the learning 
system, the system discretizes the map into squares, to 
reduce computational complexity of the learning. Each 
square represents a state in the learning problem. 

For the hierarchical algorithm we used the passages on 
the decomposed map as the interconnection function in the 
following way:  
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In the flat problem the agent starts from the middle of 
area A, and gets a reward of +10000 for reaching the 
middle of area G (goal position). The agent can move in the 
four directions on the discretized map, with a reward of -1 
on every step that does not end at the goal state. 
Furthermore the agent gets a reward of -5 for each bounce. 

In the hierarchical problem the agent starts from a 
random position on each sub-map, and gets a reward of 
+100 for reaching a passage on that partition (or the goal 
position of area G). On the second level of the hierarchy, 
the agent gets a reward of +100 for reaching the goal state 
and a reward of -1 on every step that does not end at the 
goal state. 

Fig. 9 displays the learning curves of the flat and 
hierarchical algorithms obtained by averaging over 100 
runs. With the hierarchical decomposition it is possible to 
learn the task in very few learning episodes. The curve of 
the flat learner stabilizes around a performance of 70.9 after 
41 episodes. The curve of the hierarchical method stabilizes 
around a performance of 70.3 after 13 episodes. 

The results presented in this paper depend on the 
parameters of the used algorithm. In this example we set the 
trace-decay parameter λ to 0.95 and the discount factor γ to 
0.9. Furthermore we used ε = 0.1 for the ε-greedy strategy. 

 
Fig. 9. Learning curves of the flat and hierarchical algorithms. 

VII CONCLUSION 
In this paper we have described a hierarchical 

reinforcement learning method, which can reduce the 
computational complexity of the learning problem. The 
results of the simulations illustrate that this algorithm 
performs much better than the flat learner algorithm, but it 
requires some prior knowledge about the problem. 

The final goal is to create the learning hierarchy without 
any prior knowledge about the problem. In the future we 
need to investigate the possibility of approximating the 
interconnection function by exploring the state space. 
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