
Automated Affect Detection in Deep Brain Stimulation for
Obsessive-Compulsive Disorder: A Pilot Study

Jeffrey F. Cohn
University of Pittsburgh

Pittsburgh, PA
jeffcohn@pitt.edu

Laszlo A. Jeni,
Itir Onal Ertugrul

Carnegie Mellon University
Pittsburgh, PA

{laszlojeni,iertugru}@cmu.edu

Donald Malone
Cleveland Clinic
Cleveland , Ohio
maloned@ccf.org

Michael S. Okun
University of Florida
Gainesville, Florida

okun@neurology.ufl.edu

David Borton
Brown University

Providence, Rhode Island
david_borton@brown.edu

Wayne K. Goodman
Baylor College of Medicine

Houston, Texas
wayne.goodman@bcm.edu

ABSTRACT
Automated measurement of affective behavior in psychopathology
has been limited primarily to screening and diagnosis. While useful,
clinicians more often are concerned with whether patients are im-
proving in response to treatment. Are symptoms abating, is affect
becoming more positive, are unanticipated side effects emerging?
When treatment includes neural implants, need for objective, re-
peatable biometrics tied to neurophysiology becomes especially
pressing. We used automated face analysis to assess treatment
response to deep brain stimulation (DBS) in two patients with in-
tractable obsessive-compulsive disorder (OCD). One was assessed
intraoperatively following implantation and activation of the DBS
device. The other was assessed three months post-implantation.
Both were assessed during DBS on and off conditions. Positive and
negative valence were quantified using a CNN trained on norma-
tive data of 160 non-OCD participants. Thus, a secondary goal was
domain transfer of the classifiers. In both contexts, DBS-on resulted
in marked positive affect. In response to DBS-off, affect flattened
in both contexts and alternated with increased negative affect in
the outpatient setting. Mean AUC for domain transfer was 0.87.
These findings suggest that parametric variation of DBS is strongly
related to affective behavior and may introduce vulnerability for
negative affect in the event that DBS is discontinued.
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1 INTRODUCTION
Obsessive compulsive disorder (OCD) is a persistent, oftentimes
disabling psychiatric disorder that is characterized by obsessive
thoughts and compulsive behavior. Obsessive thoughts are intru-
sive and unwanted and can be highly disturbing. Compulsions are
repetitive behaviors that an individual feels driven to perform. The
obsessive thoughts are recognized as irrational, yet they remain
highly troubling and are relieved if only temporarily by compulsive
rituals, such as repetitive hand washing or repeated checking to see
whether a particular event (e.g., shutting a door) was performed [1].
When severe, individuals may be home-bound and highly impaired
personally and in their ability to function in family or work set-
tings. While cognitive behavioral therapy or medication often are
successful in providing relief, about 25% of patients fail to respond
to them. Their OCD is treatment resistant, unrelenting.

Electrical stimulation of the ventral striatum (VS) has proven
effective in about 60% of otherwise treatment resistant (i.e., in-
tractable) cases [16]. DBS entails implanting electrodes into the
VS for continuous deep brain stimulation (DBS). The VS is part of
a reward circuit that is involved in appetitive behavior and emo-
tion processes more generally. A potential side effect of DBS for
treatment of OCD is hypomania or mania, which can have seri-
ous consequences that can necessitate hospitalization. To avoid
this potential side effect and maximize treatment efficacy, optimal
programming of DBS is essential.

A mirth response of intense positive affect frequently occurs
during initial DBS and signals good prognosis. The mirth response
is related to the affective circuitry of VS. Programing DBS adjust-
ments for OCD are made largely on the basis of subjective reported
emotion over a period of several months. While useful, subjective
judgments are idiosyncratic and difficult to standardize. To max-
imize treatment efficacy while minimizing potential side effects,
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objective, quantifiable, repeatable, and efficient biomarkers of treat-
ment response to DBS are needed.

A promising option is automated measurement of facial expres-
sion. Automated emotion recognition from facial expression is an
active area of research [26, 29]. In clinical contexts, investigators
have detected occurrence of depression, autism, conflict, and PTSD
from visual features (i.e., face and body expression or movement)
[7, 10, 18, 22, 25, 27]. In the current pilot study, we explored the
feasibility of detecting changes in affect in response to time-locked
changes in neurophysiological challenge. We evaluated intraop-
erative variation in DBS in relation to discrete facial actions and
emotion valence in response to DBS.

Most previous work in relation to psychological disorders has
focused on detecting presence or absence of a clinical diagnosis
(e.g., depression). In contrast, our focus is synchronized variation
between deep brain stimulation and affective behavior in a clinical
disorder, OCD. We ask how closely affect varies with parametric
changes in DBS of the ventral striatum in clinical patients. The goal
is to evaluate a new measure of DBS, objective measurement of
facial expression, in relation to brain stimulation. The long-term
goal is to evaluate the potential efficacy of objective measurement
of behavior for modulating DBS to optimize treatment outcome.

Video was available from two patients that were treated with
DBS for intractable OCD. One was recorded intraoperatively. The
other was recorded during interviews at about three months post-
implantation of DBS electrodes. He was recorded when DBS was
on and then three hours after DBS had been turned off. In both
patients, our focus was on change in affect as indicated by objective
facial measurement in response to variation in DBS.

Two contributions may be noted. One is exploration of a novel,
objective, repeatable, efficient measure of emotion-relevant behav-
ior in response to parametric variation in brain activity. Emotion-
relevant behavior is quantified using both discrete facial action units
[14] and positive and negative valence. Action units are anatomi-
cally based facial movements that individually or in combination
can describe nearly all possible facial expressions. Using automated
face analysis, we measured facial action units (AU) relevant to emo-
tion. Affective valence was measured using a priori combinations
of AU. Valence is informed by circumplex models of emotion and
RDoC (Research Domain Criteria) constructs of positive and nega-
tive affect. We explored an approach that maps specific AU to each
of these constructs. Two, we found strong support for the relation
between variation in VS stimulation and affective behavior. The
findings suggest the hypothesis that DBS is related to increased
positive affect and vulnerability to negative affect if withdrawn.

2 METHODS
2.1 Participants and observational procedures
Patient Awas a 29-year-old womanwith severe, treatment-resistant
early childhood onset OCD. Prior to implantation and treatment
with DBS, she experienced nearly constant unwanted intrusive
thoughts accompanied by the urge to perform neutralizing rituals,
such as repeatedly snapping the shoulder straps of her clothing. She
was video-recorded intraoperatively. While lightly sedated, she was
alert and able to engage in conversation with medical personnel.

The camera was oriented about 45 degrees above her face. Her
head was secured in a stereotaxic frame for surgery. The duration
of the recording was about 9 minutes. About 4 minutes of which
was analyzable. During the remainder of the recording the camera
was zoomed out and face size proved too small for analysis.

Patient B was a 23-year-old man with severe OCD since early
childhood. His OCD was characterized by extreme, recurrent doubt
and checking. He would take hours to leave his house due to check-
ing. He also suffered from perfectionism, particularly with shaving,
which could take up to 2 hours to complete. Always late to every-
thing, he missed large amounts of school as a child and young adult.
He tried some college classes but could rarely manage to get there.

He was implanted with bilateral VC/VS stimulation in 2002,
which dramatically reduced his obsessive-compulsive behavior and
improved his quality of life. Approximately three months following
the start of DBS treatment, he was interviewed in each of two
conditions. One was with DBS on. The other was after DBS had
been turned off for about three hours. The video sample from the
on condition was about 1 minute in duration; video from the off
condition was about 43 secs in duration. We thus were able to
compare his emotion expression both with and without DBS.

2.2 Video
For Patient A, video resolution was 640x426 with an intraocular
distance (IOD) of about 130 pixels. The sterotaxic frame occluded
the lateral eye corners and cheeks. For Patient B, video resolution
was 320x240 with IOD of about 36 pixels, which is less than optimal.
Using bicubic interpolation, IOD was increased to about 80 pixels
for facial action unit detection.

2.3 Face tracking and registration
Faces in the video were tracked and normalized using real-time face
alignment software that accomplishes dense 3D registration from
2D videos and images without requiring person-specific training
[20]. Faces were centred, scaled, and normalized to the average
interocular (IOD) distance of the patients and in training of the
classifiers prior to their use in the patients.

2.4 Action Unit Detection
We trained a convolutional neural network (CNN) on data from
160 participants from the BP4D and BP4D+ databases [30, 31]. Sub-
sets of these data have been used in FERA 2017 [29] and 3DFAW
[21]. The CNN contains three convolutional layers and two fully
connected layers (see Figure 1). Normalized frames are converted
into grayscale images and fed as inputs to the network. We employ
64, 128, and 128 filters of 5 × 5 pixels in three convolutional lay-
ers, respectively. After convolution, rectified linear unit (ReLU) is
applied to the output of the convolutional layers in order to add
non-linearity to the model. We apply batch normalization to the
outputs of all convolutional layers. Our network contains three
max-pooling layers which are applied after batch normalization.
We apply max-pooling with a 2 × 2 window such that the output
of max-pooling layer is downsampled with a factor of 2. We add
dropout layers after max-pooling and set dropout rate to 0.25 for
regularization. Output of the last dropout layer is connected to the
fully connected layer of size 400. Finally, the output of first fully
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Figure 1: Overview of the deep network trained on BP4D+
dataset used to provide AU probabilities for OCD patients.

Table 1: AU classification results on BP4D+ dataset.

- Base Rates S score AUC F1-Score (PA) NA

AU1 0.09 0.75 0.79 0.37 0.93
AU2 0.07 0.79 0.80 0.32 0.94
AU4 0.08 0.84 0.79 0.45 0.96
AU6 0.45 0.70 0.93 0.84 0.86
AU7 0.65 0.63 0.88 0.86 0.72
AU10 0.60 0.73 0.93 0.89 0.82
AU12 0.52 0.73 0.94 0.87 0.86
AU14 0.52 0.43 0.79 0.73 0.69
AU15 0.11 0.76 0.85 0.43 0.93
AU17 0.14 0.67 0.80 0.42 0.90
AU23 0.15 0.68 0.82 0.49 0.91
AU24 0.04 0.91 0.85 0.18 0.98

Average 0.29 0.72 0.85 0.57 0.87

connected layer is connected to the final layer having 12 neurons,
each corresponding to the probability of 12 AUs: AU1, AU2, AU4,
AU6, AU7, AU10, AU12, AU14, AU15, AU17, AU23 and AU24. The
AUs were selected based on their relevance to positive and negative
affect [8, 9, 12, 24].

We perform multi-label AU classification in such a way that our
model learns to represent and discriminate multiple AUs simul-
taneously. Therefore, we used binary cross-entropy loss. During
optimization we used Adam optimizer [23] with a learning rate
0.001 and decaying learning rate weight 0.9. We performed 5-fold
cross validation to measure the success of our model in detecting
AUs.

Intersystem agreement between the CNN and manual FACS
coding (i.e., ground truth) was quantified using AUC, F1 (positive
agreement), NA (negative agreement), and free-marginal kappa
[3, 4], which estimates chance agreement by assuming that each
category is equally likely to be chosen at random [32]. (Table 1).

2.5 Positive and Negative Affect
To quantify intensity of positive and negative affect (PA and NA,
respectively), linear combinations of AU intensities were used. Pos-
itive affect was defined as intensity of AU 1+2 and AU 6+12. AU
6+12 signals positive affect and is moderately to highly correlated

with dimensional subjective ratings of same [2, 15, 17]. AU 1+2 was
included in PA for its relationship to interest, engagement and sur-
prise [9, 13, 19]. Negative affect was defined as intensity of AU 4 and
AU 7. AU 4 is common in holistic expressions of negative emotions
(e.g., anger and sadness) [9, 13], is a primary or often sole measure
for negative affect in facial EMG studies of emotion [5, 6, 11], and
is highly correlated with dimensional subjective ratings of negative
affect [2, 17]. Because AU 7 can occur secondarily to strong AU 6
[14], it was omitted from NA in the presence of AU 6 and AU 12.
Additional AU were considered as indices of negative affect (e.g.,
AU 15) but failed to occur and so were not included in NA. We
obtain positive and negative affect (PA and NA, respectively) from
AU probabilities as given in Algorithm 1.

Algorithm 1 Obtaining PA and NA from AU probabilities
Require: Probabilities of AU1 (pau1), AU2 (pau2), AU4 (pau4), AU6

(pau6), AU7 (pau7), AU12 (pau12)
Ensure: Positive Affect (vpos ), Negative Affect (vneд )
1: if (pau6 + pau12) > pau7 then
2: λ← 0
3: else
4: λ← 1
5: end if
6: vneд = pau4 + λpau7
7: vpos = max(pau1 + pau2,pau6 + pau12)

3 RESULTS
The CNN was used to automatically detect AUs and positive and
negative affect for each patient. Because the classifiers were trained
and tested on BP4D and not on OCD patient video, we assessed
their generalizability for use in the patient videos. CNN multilabel
output was compared with manual FACS coding of the videos. AUC
for the intraoperative, DBS-off, and DBS-on videos was 0.93, 0.77,
and 0.92, respectively, which suggests good generalizability to the
target domain.

Time series for classifier outputs for AU 12 (smile) in Patient A
are shown in Figure 2. Outputs for AU 6 (cheek raise, the Duchenne
marker for positive affect) were highly congruent with those for AU
12, and in interest of brevity are not shown. In Patient A, smiling
shows a dramatic on/off cycling that maps onto the variation in
DBS. Onsets of AU 12 are especially steep, rising from baseline to
maximum intensity in very few frames. Each of these onsets occurs
immediately after DBS is triggered. The decreases in AU 12 follow
ramping down of the DBS. AU associated with negative affect was
not observed. However, during the DBS off segments, facial tone
dramatically decreased. Affect drained from her face.

Figure 3 shows outputs for positive and negative affect (PA and
NA, respectively) during On and Off segments for Patient B. When
DBS was on, PA cycled on an off with variable cycle duration and
more variable and moderate onset phase dynamics. Specific AU
included both illustrators (AU 1+2, which can be seen in the example
frame) and strong AU 6+12. NA was infrequent and of low intensity.



Figure 2: Intraoperative tracking of positive affect in Patient A. The pronounced cycling corresponds closely to variation in
DBS parameters. It is high and sustained during stimulation and low and sustained when stimulation is off.

Figure 3: Positive and negative affect (PA and NA, respectively) in Patient B. In the left panels, DBS is on. In the right panels,
DBS has been off for three hours.

WhenDBSwas off, PAwas greatly attenuated. PA signal strength
was at chance levels. NA by contrast was frequent and cycled on
and off over the entire segment. This activity was primarily due to
AU 7 (lower eyelid tightening, which is common in anger) and AU
4 (brow furrowing), which is common to anger and other negative
emotions. AU 7 and low-intensity AU 4 are visible in the example.

4 DISCUSSION
DBS was associated with marked variation in affect, especially in-
traoperatively. In that context, steep increases in DBS produced
dramatic increases in positive affect. Smiling was intense and pro-
tracted. Two of three smiles were about a minute in duration, which
is unusual. When smiles ended, muscle tone appeared to drain
from the face rather than return to a baseline. Loss of tone is not
something described in Facial Action Coding System and to our
knowledge has not been reported previously in emotion research.
Experience with DBS suggests that facial actions alone may be
insufficient to annotate facial affect.

Unlike Patient A for whom DBS was novel, Patient B was three
months post implantation and had accommodated to chronic DBS.
When his DBS was discontinued for three hours, the effects were
less pronounced than in the interoperative case, but were dramatic
nevertheless. While DBS was on, Patient B was highly interactive,
he frequently used brow raise as illustrators or indices of surprise,
and frequently displayed Duchenne smiles. Large arm and move-
ments were integrated with his facial affect. Cycles of positive affect
were well organized, showed more gradual acceleration in smile
onsets, and were variable in intensity and duration.

When DBS was off for three hours, Patient B’s behavior changed
markedly. Gone were the paralinguistic brow raises, smiling was
infrequent and failed to include the Duchenne marker (AU 6), lower
eyelid tightening (AU 7) occurred, and brow furrowing (AU 4) was
common. While these indicators of NA were not severe, affect was
consistently flattened and mildly negative.

The findings in both patients suggest VS stimulation has a strong
influence on both positive and negative affect. The relation between

PA and the VS has been noted previously; the relation between NA
and VS has been less appreciated. Further work will be needed to
explore the full range of affective experience in relation to DBS.
This will be increasingly important with the advent of "closed-
loop" DBS in which level of stimulation is titrated continuously in
response to neurophysiology and affective behavior. Experimental
investigations of closed-loop DBS are underway.

DBS as a treatment for OCD raises essential questions about
personality. It would be important to know about Patient B’s levels
of extraversion and neuroticism prior to DBS. Was he reserved,
inhibited, slightly negative, as he was in the off phase? Or was
he more outgoing, positive, and engaging, at least when his OCD
allowed? To what extent might DBS alter qualities of being? Does
habituation occur [28]? What might be the consequences of with-
drawing DBS? Questions such as these will require longitudinal
designs.

Several imitations are noted. In common with most previous re-
ports of DBS for OCD and depression, the number of subjects was
small. Neurosurgery for psychiatric disorders is in its early stages
and cost and availability of subjects are limiting factors. Video in the
current study was available from only two patients, was relatively
brief, and was not recorded with analysis in mind. Self-reported
emotion and personality measures were not obtained, and in the
intraoperative case, the timing of DBS offsets was unavailable. Fur-
ther research using a range of behavioral measures, larger samples,
and longitudinal designs will be needed to understand the relation
between neural stimulation, affect, and personality. We recently
initiated two studies that have these goals.
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