
Magyar Kutatók 7. Nemzetközi Szimpóziuma 
7th International Symposium of Hungarian Researchers on Computational Intelligence 

 201 

Mobile Agent Control in Intelligent Space using 
Reinforcement Learning 

László Jeni, Zoltán Istenes 
Faculty of Informatics, Eötvös Loránd University 
email: {jedi,istenes}@inf.elte.hu 

Péter Korondi 
Dept. of Automation and Applied Informatics, Budapest University of Technology 
and Economics 
email: korondi@elektro.get.bme.hu 

Hideki Hashimoto 
Institute of Industrial Science, University of Tokyo 
email: hashimoto@iis.u-tokyo.ac.jp 

Abstract: Finding the safest shortest path in an unknown environment is a fundamental task 
in mobile robotics. To emulate the human adaptibility in this field, we can use the 
Intelligent Space concept. The Intelligent Space is a distributed sensory system, which is 
the background infrastructure to observe human walking in a limited area. The observation 
of human beings is applied to create a walkable area map of the environment and this map 
is applied to a learning framework to find the safest path through the environment. The 
proposed learning framework applies Temporal Difference learning. The main contribution 
of this paper is that it integrates the Reinforcement Learning and the Intelligent Space 
concept. 
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1 Introduction 

The essential task in robotics is to create an intelligent machine which achieve a 
desired task through interaction with the environment. The behaviour of mobile 
robot is reasoning and acting based on knowledge and sensed information. 
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Flexible behaviour requires the ability to acquire new knowledge automatically to 
learn from experience and to 'forget' obsolete knowledge. 

Finding the safest shortest path in a completely unknown environment is still a 
hard problem, because mobile robots need topological maps in order to operate in 
the environment. Advanced mobile systems can explore their environment and 
build such maps by themselves, but these methods have the problem that most 
sensors will not detect all possible types of obstacles (for example yellow lines on 
the floor or signs saying ‘don't enter’) without large amounts of contextual 
knowledge. 

The Intelligent Space can recognize and track the path of moving object (human 
beings). In indoor environments people and robots consider similar things as 
obstacles (the only common exceptions here are steps and stairs). As our 
environment is build to be safe for people the robot can usually rely upon them to 
make few mistakes. 

There are two primary threads of research that have led to what is now called 
reinforcement learning. One thread concerns the problem of optimal control and 
its solution using value functions and dynamic programming The other thread 
concerns learning by trial and error and started in the psychology of animal 
learning. Recently, several modifications and applications were published, a good 
overview can be found in [10]. It can be formalized as a Markov Decision Process 
as well [7]. 

We propose the first version of a learning framework which uses the capability of 
the Intelligent Space and reinforcement learning in order to learn the safest path 
through an environment. The Intelligent Space will serve us as a test bed for the 
existing reinforcement learning algorithms and the development of new ones. 

This paper is organized as follows. The next section introduces the Intelligent 
Space concept. Section 3 introduces reinforcement learning and Temporal 
Difference learning. Section 4 introduces the learning framework integrated into 
the Intelligent Space. Section 5 shows experiment for learning the safest shortest 
path in the environment. 

2 Intelligent Space 

2.1 History and Concept of the Intelligent Space 

Hashimoto Lab. in University of Tokyo has proposed 'Intelligent Space' since 
1996 [1]. At the beginning it consisted of two sets of vision cameras and 
computers with a home made 3D tracking software, this was written in C and 
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tcl/tk under Linux. Later, a large-sized video projector (100 inches) was added to 
the Intelligent Space as an actuator. Mobile robots were located in the Intelligent 
Space for supporting people as well as for being supported. Vision cameras and 
computers sets were arranged around an entire room and it changed into the 
Intelligent Space. Conventionally, there is a trend to increase the intelligence of a 
robot operating in a limited area. The Intelligent Space concept is the opposite of 
this trend. The surrounding space has sensors and intelligence instead of the robot. 
A robot without any sensor or own intelligence can operate in an Intelligent Space. 
In the conventional solution the robot measures, calculates and decides. The heart 
of the iSpace concept is that the robots must not measure, calculate or make 
decision. They just carry out, execute commands getting information from the 
distributed devices called Ubiquitous Sensory Intelligence which is realized by 
Distributed Intelligent Networked Devices (DIND). 

 

 
Figure 1 

Intelligent Space Concept 

The Intelligent Space consists of humans not only sensors cameras or robots. In 
the Intelligent Space DINDs monitor the space, achieve data and share them 
trough the network. Since robots in the iSpace are equipped with wireless network 
devices, DINDs and robots together organize a network. 

The basic concept of Intelligent Space has extended with its development. The 
iSpace is a system for supporting people in it. Events, which happen in it, are 
understood. However, to support people physically, the intelligent space needs 
robots to handle real objects. Mobile robots become physical agents of the 
Intelligent Space and they execute tasks in the physical domain to support people 
in the space. Task includes movement of objects, providing help to aged or 
disabled persons etc. Thus, the Intelligent Space is an environmental system, 
which supports people in it electrically and physically. Another interesting 
application here is that the room can serve as a high level, context sensitive 
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interface to robots. The Intelligent Space is a platform to which desultory 
technologies are installed. 

The ongoing research activities about Intelligent Space achieved several results 
and solutions in the field of recognition and tracking the path of moving objects 
[2], feature extraction [3] and motion control [4]. These algorithms mainly use 
classical mathematical and soft-computing methods. Although these algorithms 
perform well in Intelligent Space, in some aspects they face their limits. Recent 
research focuses on image recognition and on solutions that are developed on the 
analogy of the human vision processing [5]. 

2.2 Walking Area Identification in the Intelligent Space 

To identify the walking areas in the environment the Intelligent Space tracks the 
movement of humans [6]. Recognizing the human is done in two steps. First the 
area of a human is separated from the background. Second features of the human 
as head, hands, feet, eyes, etc. are located. Taking the images of several cameras 
we can then calculate the 3D position of the human. See Figure 2. 

 
Figure 2 

Human recognition and 3D position calculation 

 
Figure 3 

Ground plane of the Intelligent Space (rectanges are tables and other objects). Filtered positions 
marked with dots (left), and the dilated walkable area marked (right). 
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To determine which areas people walk in the Intelligent Space recognizes what 
people are doing when they were seen. Positions where people sitting on chairs, 
learning over tables or having their hands on tables while working have to be 
filtered out. The Intelligent Space filters out these positions by height tresholding: 
if a person is stainding upright its head is above its walking area. Then the 
positions are dilated with a morphological operator to obtain a connected walking 
area. 

3 Reinforcement Learning 

3.1 Markov Decision Processes 

The concept of a reinforcement learning problem is easiest to describe by 
considering an agent situated in some environment, as shown in Figure 4. The 
agent can sense information about the state of the environment. The agent can also 
affect the environment by taking one of a set of actions available to it. After each 
action is taken, the agent receives a feedback signal from the environment called 
the reward, which determines how well the agent is performing the target task in 
the environment. The goal in a reinforcement learning problem is to learn which 
action to take in each state to maximise some optimality criterion based on the 
rewards received over time. Some examples of optimality criteria are average 
reward per time step, total return over a finite horizon and total discounted return. 

 
Figure 4 

Basic components of a reinforcement learning problem 
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A reinforcement learning problem can be formalized as a Markov Decision 
Process [7] or MDP. An MDP is described by a quadruple <S,A,T,R> where: 

- S is the set of possible states. 

- A is the set of available actions. 

- T(s,a,s’) → [0,1] is the transition function defining the probability that 
taking action a in state s will result in a transition to state s’. 

- R(s,a,s’) → R is the reward function defining the reward received when a 
transition is made. 

A particular strategy for choosing actions in an MDP is known as a policy, and is 
specified formally as a function π(s,a) → [0,1], which defines the probability of 
selecting each action in a given state. 

For some policy π and a discount factor γ∈[0,1), the value function Vπ(s) can be 
defined as the expected total discounted return when starting in state s and using 
policy π to choose actions: 
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Intuitively, the value function Vπ(s) represents how good it is for an agent to be in 
a particular state of the MDP, given that subsequent actions are to be chosen using 
policy π. The discount factor is used to determine the relative worth of future 
rewards in comparison to rewards available immediately in the current state. The 
value of γ is chosen to be less than 1 to give Vπ a finite value for each state. The 
optimal policy π* is the policy which, according to the optimality criterion, 
performs better in the environment than any other policy π. The formal definition 
of π* is: 
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While our goal is to find π*, MDP solution methods are often based on a 
calculation of the value function for the optimal policy Vπ*, also denoted by V*. 
Once V* has been calculated, the parameters of the MDP can be used to calculate 
π* as well: 
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3.2 Temporal Difference Learning 

In the learning framework we used Temporal Difference (TD) Learning [8] to 
learn the value function Vπ for the policy π being followed by the learning agent. 
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The Temporal Difference method is a learning-method driven by the difference 
between two successive state values to adjust former state values which decrease 
the difference between all two successive state values. This method guaranteed 
converges to the optimal policy within a finite amount of evaluation. 

In the framework TD is implemented using an eligibility trace. The eligibility 
trace for a state s is a value es which determines the extent to which s should be 
updated using the value of the current state st. At every time step each of the es 
values is updated as follows: 
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Once the eligibility trace values have been updated, the current estimate of each 
state value can also be updated: 
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Furthermore we used ε-greedy [9] strategy (with ε = 0.01) to balancing 
exploration and exploitation in the learning process. This is a simple but effective 
mechanism for trading off the exploration of the random policy against the 
exploitation of the greedy policy. There is a small probability ε at each time step 
of picking an action at random, otherwise the greedy policy is followed. With a 
good choice of the value for ε, the policy will quickly converge to one which 
selects the optimal action with probability (1-ε). 

4 Learning Process 

Figure 5 shows the scheme of the whole system. The distributed sensors (DIND) 
of the Intelligent Space observe the position and speed of inhabitants (a), then the 
system identifies walking areas from sensed situations (b). The walking area map 
is given to the learning system, where the safest shortest path is learned (c). The 
learned safest path is used to control mobile agents in the Intelligent Space (d). 

Before we give the walking area map to the learning system, the system 
discretizes the map into squares, to reduce computational complexity of the 
learning (Figure 6). 
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Figure 5 

Scheme of the whole system: (a) observing, (b) walking area identification,  
(c) learning system, (d) control mobil agents. 

 
Figure 6 

Discretized map and safe areas. 

5 Simulations and Results 

In this section we present some experimental results. Our experiments were 
performed using the walkable area map of the Intelligens Space and we defined 
two navigation tasks in this domain. The agent starts from the point ‘A’, and gets a 
reward of +10 for reaching the point ‘B’, as shown in Figure 7. The agent can 
move in the four cardinal directions on the discretized map, with a reward of -1 on 
every step that does not end at the goal state. Furthermore the agent gets a reward 
of -3 for each bounce (walk into the unsafe area). 

It is possible to learn the task with the mentioned algorithm in very few learning 
episodes. Figure 8 displays the learning curves of the navigation tasks obtained by 
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averaging over 100 runs. The curve of the first task starts from –0.99 and 
stabilizes around a performance of –0.52 after 12 episodes. In the second task the 
curve starts from –0.93 and stabilizes around a performance of –0.64 after 18 
episodes. 

 
Figure 7 

Navigation task (from A1 to B1 and from A2 to B2). 

 
Figure 8 

Learning curves for the navigation tasks. 

The results presented in this paper depend on the parameters of the used 
algorithm. In this example we set the trace-decay parameter λ to 0.95 and the 
discount factor γ to 0.9. Furthermore we used ε = 0.01 for the ε-greedy strategy. 

Conclusions 

We have described a learning framework integrated into the Intelligent Space, 
which is able to learn the shortest safest path in the environment. The results of the 
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simulations illustrate that the system can learn the optimal path in very few 
learning episodes and therefore can be used to control mobile robots in the 
Intelligent Space. 

The final goal is to get the learning framework on real mobile robots of the 
Intelligent Space. To achieve this the next step is to expand the learning 
framework for a more complex model, which describes better the real robots. In 
future work we will use hierarchical reinforcement learning methods, which have 
been proved to be useful for learning in large domains. 
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