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Abstract

The performance of automated facial expression coding has improving steadily as ev-
idenced by results of the latest Facial Expression Recognition and Analysis (FERA 2017)
Challenge. Advances in deep learning techniques have been key to this success. Yet the
contribution of critical design choices remains largely unknown. Using the FERA 2017
database, we systematically evaluated design choices in pre-training, feature alignment,
model size selection, and optimizer details. Our findings vary from the counter-intuitive
(e.g., generic pre-training outperformed face-specific models) to best practices in tuning
optimizers. Informed by what we found, we developed an architecture that exceeded
state-of-the-art on FERA 2017. We achieved a 3.5% increase in F1 score for occurrence
detection and a 5.8% increase in ICC for intensity estimation.

1 Introduction
In the last-half decade Automated Facial Affect Recognition (AFAR) systems [5] have made
major advances in detection of the occurrence and intensity of facial actions, while mov-
ing away from controlled laboratory conditions to unconstrained in-the-wild scenarios (see,
e.g., [5] and references therein). The evolution of the approaches competing in the previ-
ous Facial Expression Recognition & Analysis Challenge (FERA 2015 [26], FERA 2017
[27]) illustrates a shift in the design choices of face representation: data driven deep learning
methods are favored over "hand-crafted" shallow representations. In 2015 only a single deep
learning method [11] entered the Challenge. It ranked 3rd and 4th in occurrence and intensity
detection, respectively. Two years later, deep learning based approaches have dominated the
medal podium by a large margin [24, 30].

While the advantage of modern deep learning techniques is clear, little is known about
critical design choices among them. Most studies use ad-hoc or default parameters provided
by the deep learning frameworks; they neglect to investigate the effect of different parameter
settings on facial action unit (AU) detection. Little is known about the relative contribution of
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different design choices in pre-training, feature alignment, model size, and optimizer details.
A related question is whether a system that exhibits superior performance in a domain in
which it has been trained and initially tested will be top performer in another domain[6]. A
system may achieve top performance in one domain only to struggle within another domain.

To address questions in design choices, we systematically explored the combinations
of different components and their parameters in a modern deep learning based pipeline.
Choices included: pre-training practices, image alignment for pre-processing, training set
sizes, optimizers, and learning rates (see the different design choices of the current methods
in Table 1). By utilizing all the insights, we achieved state-of-the-art performance on both
the occurrence and the intensity sub-challenges of FERA 2017 [27] and state-of-the art in
cross-domain generalizability to the Denver Intensity of Spontaneous Facial Action (DISFA)
dataset [19].

Table 1: An overview of the design choices from studies reporting performance on the FERA
2017 sub-challenges. For occurrence detection, F1 scores are reported. For intensity detec-
tion, Intraclass Correlation coefficients (ICC) are reported. N/A denotes not applicable; N/R
denotes not reported. Best scores are denoted in bold.
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Valstar et al. [27]
Facial
landmarks Shallow n/a n/r n/a n/a 0.452 0.217

Li et al. [17]
Facial
landmarks Hybrid VGG-Face1 26,582 n/a n/a 0.498 n/a

Batista et al. [3]
Face
position Deep none2 1,321,472 Adam 10−3 0.506 0.399

He et al. [12] Resizing3 Hybrid none 146,847 n/r n/r 0.507 n/a

Tang et al. [24]
Face
position4 Deep VGG-Face

440,541
+α5 SGD 10−3 0.574 n/a

Ertugrul et al. [8]
Face
position Deep none 1,321,623 Adam 10−3 0.525 n/a

Li et al. [16]
Facial
landmarks Deep

ImageNet-
VGG-VD19

260,000
+α6 SGD 10−4 n/a7 n/a

Amirian et al. [1]
Facial
landmarks Shallow n/a n/r n/a n/a n/a 0.295

Zhou et al. [30] Resizing Deep
ImageNet-
VGG-VD16 54,000 SGD 10−4 n/a 0.446

1 A VGG pre-trained model was used to extract features, but not used for classification.
2 A VGG pre-trained model was used to detect faces, but not used for classification.
3 Face detection was used for train and validation partition, but not for test partition.
4 Face position was not directly used, but facial images were cropped by using morphology operations including binary segmentation, con-

nected components labeling and region boundaries extraction.
5 After down sampling to 440,541 images, Tang et al. increased the number of samples to balance positive and negative samples.
6 Li et al. increased the number of samples to balance positive and negative samples.
7 In their paper Li et al. reported F1 scores only on validation partition.

2 Related Work

Numerous approaches have been proposed for action unit (AU) analysis (see [5, 7, 18] and
references therein). For most of these, face orientation has been relatively frontal. Where
moderate to large non-frontal pose has been considered [13, 15, 21, 23, 25], the lack of a
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Figure 1: An overview of the experimental design. Blue color denotes design choices and
parameters for systematic evaluation.

common protocol has undermined comparisons.
The FERA 2017 Challenge [27] was the first to provide a common protocol with which

to compare approaches to detection of AU occurrence and AU intensity robust to pose vari-
ation. FERA 2017 provided synthesized face images with 9 head poses as shown in Fig.
1. The training set is based on the BP4D database [28], which includes digital videos of 41
participants. The development and test sets are derived from BP4D+ [29] and include digital
videos of 20 and 30 participants, respectively. FERA 2017 presented two sub-challenges:
occurrence detection and intensity estimation. For the former 10 AUs were labelled; for the
latter, 7 AUs were labelled.

For FERA 2017, the participants proposed a wide range of methods. Table 1 compares
them with each other and with two more recent studies from Ertugrul et al.[8] and Li et
al.[16]. F1 score and Intraclass Correlation (ICC) were used to evaluate performance for
occurrence detection and intensity estimation, respectively.

Several comparsions are noteworthy. While detailed face alignment using facial land-
marks was used for shallow approaches, simple face alignment using face position or re-
sized images more often sufficed for deep learning (DL) approaches. As for architecture,
DL performed better than shallow approaches, and DL approaches with pre-trained models
performed better than ones without pre-trained model. For both of the sub-challenges, the
methods showing the best performance (Tang et al. [24] for occurrence detection, and Zhou
et al. [30] for intensity estimation) used DL with a pre-trained model. As for training set
size, each method used different number of training images. Adam and SGD were popular
choice for optimizer and learning rate varied between 10−3 and 10−4.

According to the comparison of the existing methods, the effectiveness of DL approaches,
especially the ones using pre-trained models, is indicated for this task, but every approach
used a different fixed configuration and the key parameters are unknown. The aim of this
study is to investigate the key parameters for both AU occurrence and intensity estimation
for this task, and show the optimal configuration.

3 Experiments

The main goal of this study is to investigate the effect of the different components and pa-
rameters, and to provide best practices that researchers can use for training deep learning
methods for automatic facial expression analysis. Fig. 1 shows an outline of our experi-
mental design. We systematically varied parameters and design choices in this pipeline (key
elements are denoted in blue color in Fig. 1).
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In every experiments, we explored the effect of optimizer choice and parametric varia-
tion of an additional key parameter (image normalization, pre-training choice, training set
size, and learning rates). In our baseline configuration we used Procrustes analysis for face
alignment and VGG16 network trained on ImageNet. For optimizers, we compared Adaptive
Moment Estimation (Adam) and Stochastic Gradient Descent (SGD), with defaults learning
rates of 5×10−5 and 5×10−3, respectively. We fine-tuned the network from the third con-
volutional layer using 5,000 images per each pose and AU. Dropout rate was 0.5 throughout
of the experiments.

Figure 2: Results on FERA 2017 Test partition with two normalization methods.

3.1 Normalization

We evaluated two methods for image normalization. In the first case we applied Procrustes
analysis [10] to the face shapes defined by the landmarks to estimate similarity normalized
shapes. In the second case we resized the images to the receptive field of the deep network.

Similarity normalization between source and template shapes using eye locations is a
popular choice in the literature. One shortcoming of this approach is that alignment error
increases for landmarks farther away from the eye region. This artifact is more prominent
under moderate to large head pose variations. To alleviate this problem we used all the
68 landmarks provided by the dlib face tracker[14] to calculate a Procrustes transformation
between the predicted shape and a frontal looking template. We chose the size of the template
to cover a bounding box of 224x224 pixels, which corresponds to the receptive field of the
VGG network.
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As for the second option, we resized each input image from the dataset to 224x224 pixel
size to match the receptive field of the VGG network.

Fig. 2 shows the F1 scores and ICC averages for all nine poses for each AU. The left
figures show results for Adam optimizer, and the right figures show results for SGD opti-
mizer. The results indicate that the performance with Procrustes analysis is slightly better
than the one with Resizing, but the difference is small, only 1%. One possible explanation
for this is that the network has enough capacity to learn all the nine different poses present
in the training set. Other studies indicate that a form of normalization is often helpful when
classifiers are evaluated on poses different from the ones it was trained on [8].

Figure 3: Results on FERA 2017 Test partition with two pre-trained architecture.

3.2 Pre-trained architecture

Training deep models from scratch is time-consuming and the amount of training data at
hand may impede good performance. One popular solution is to select a model that was
trained on large scale benchmark datasets (source domain) and fine-tune it on the data of
our interest (target domain). Although this practice is effective, it is relatively neglected how
the type of data in the source domain influence the performance of fine-tuning in the target
domain.

To explore this question we selected two models that were trained on very different do-
mains: VGG-16 trained on ImageNet [22] and VGG-Face [20]. We replaced the final layers
of each networks with a 2-length one-hot representation for AU occurrence detection, and
with a 6-length one-hot representation for the intensity estimation task. In both cases we
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trained separate models for each AU, resulting 10 and 7 models for AU occurrence detec-
tion and AU intensity estimation, respectively. We fine-tuned our models for 10 epochs
and validated performance on the validation partition, then reported results on the subject-
independent test partition. We used a PyTorch implementation for all of our models.

Fig. 3 shows that models pre-trained on ImageNet show better performance than the
VGG-Face ones. This result seems counter-intuitive since VGG-Face was trained on face
images covering a large population, while ImageNet includes many non-face images. One
possible explanation is that head-pose variation was small in the data VGG-Face was trained
on. In this case a generic image representation is more suitable for the task.

Figure 4: Results on FERA 2017 Test partition with different number of train set size.

3.3 Training set size

Recently, multi-label stratified sampling was found advantageous over naive sampling strate-
gies for AU detection [4]. In this experiment we employ this strategy, and investigate the ef-
fect of different training set sizes on the performance. We down-sampled the majority class
and up-sampled the minority class to build a stratified training set. We used this procedure
for each pose and each AU. For example, in the case of AU occurrence detection, a 5,000
training set size indicate that 5,000 frames with AU present and 5,000 frames where the AU
is not present were randomly selected for each pose and for each AU, resulting in 90,000
images in total (=5,000 images x 2 classes x 9 poses).

We repeated the same stratifying procedure with the six ordinal classes of the intensity
sub-challenge. In this case, a 5,000 training set size means that 5,000 images were randomly
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selected from the six classes (not present, and A to E levels) for each pose and for each AU,
resulting in 270,000 images in total (=5,000 images x 6 classes x 9 poses).

Fig. 4 shows results with as the function of different training set size. The training set
size have minor influence on the performance: scores peaked at 5,000 images, after that
performance plateaued.

Figure 5: Effect of learning rates and choice of optimizers on the FERA 2017 Test partition.

3.4 Optimizer and learning rate

In this experiment we investigated the impact of different optimizers and learning rates (LR)
on the performance. We varied the learning rates, but other optimizer parameters were set to
the default values used in PyTorch: betas=(0.9, 0.999) without weight decay for Adam, and
no momentum, no dampening, no weight decay and no Nesterov acceleration for SGD.

Fig. 5 shows that the optimal learning rate depends on the choice of optimizer. For Adam,
LR=5× 10−5 gave the best results, and for SGD, LR=0.01 reached the best performance
for both occurrence detection and intensity estimation. In addition, we can see that the
performance differences between Adam and SGD are negligible if one uses the optimal
learning rates for each optimizer, respectively.

It is worth noting that Zhou et al. [30] used SGD with LR=10−4 for the AU intensity
estimation task. Our results indicate that using Adam optimizer or SGD optimizer with
larger learning rate could have improved their performance. Tang et al. [24] used SGD with
LR=10−3, but they also applied momentum. Our additional experiments revealed that when
momentum is used for SGD, smaller learning rate is preferable for optimal performance.
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More specifically, when we used the same parameters as Tang et al. [24] reported for SGD
(momentum=0.9, weight decay=0.02) F1 score peaked at 0.596 using LR=10−4. Their learn-
ing rate is close to optimal, though SGD without momentum further improves F1 score to
0.609 with LR=0.01.

We note that when the learning rate was set to a large value some models did not converge
and predicted the majority class for all samples. Under this rare condition ICC converges to
zeros, but this should not be interpreted as chance performance. As variation in predicted
intensity values reduces, the ICC metric loses predictive power.

3.5 Comparison with existing methods
We compare our method with the state-of-the-art on both the AU occurrence detection (Ta-
ble 2) and the AU intensity estimation (Table 3) sub-challenges from FERA 2017. The final
parameters of our models are nearly identical for the two tasks: we used face alignment
with Procrustes analysis as a pre-processing step, and we fine-tuned ImageNet pre-trained
VGG16 model on stratified sets consisting of 5,000 samples per each class, pose, and AU.

For AU occurrence detection, SGD with LR=0.01 gave the best result (F1 = 0.609), while
for AU intensity estimation, Adam with LR=5×10−5 reached the best performance (ICC =
0.504). These scores outperform other state-of-the-art methods.

We note a few key differences that contributed to this achievement. The main difference
with Tang et al. [24] is that they used VGG-Face pre-trained model while we used ImageNet
pre-trained model. Zhou et al. [30] used used SGD with small learning rate while the com-
bination of our optimizer and learning rate is optimal. While Li et al. [16] evaluated their
method for AU occurrence detection using the FERA 2017 dataset, they report performance
only on the Validation partition. Their best F1 score (0.522) is 9% lower than ours (0.611)
on the Validation partition.

Table 2: F1 scores for occurrence detection results on FERA 2017 Test partition.
Valstar Li et al. Batista He et al. Ertugrul Tang et al. Our modelet al. [27] [17] et al. [3] [12] et al. [8] [24]

AU1 0.147 0.215 0.219 0.198 0.196 0.263 0.329
AU4 0.044 0.044 0.056 0.043 0.067 0.118 0.187
AU6 0.630 0.755 0.785 0.747 0.766 0.776 0.814
AU7 0.755 0.805 0.816 0.784 0.791 0.808 0.878

AU10 0.758 0.810 0.838 0.816 0.840 0.865 0.865
AU12 0.687 0.753 0.780 0.809 0.819 0.843 0.837
AU14 0.668 0.750 0.747 0.691 0.764 0.757 0.758
AU15 0.220 0.208 0.145 0.208 0.247 0.362 0.376
AU17 0.274 0.286 0.388 0.398 0.349 0.424 0.467
AU23 0.342 0.356 0.286 0.374 0.413 0.519 0.578
Mean 0.452 0.498 0.506 0.507 0.525 0.574 0.609

3.6 Cross-domain evaluation
Differences in illumination, cameras, orientation of the face, quality and diversity of the
training data influence predictive performance between domains. To evaluate the generaliz-
ability of our method to unseen conditions, we report performance on the Denver Intensity
of Spontaneous Facial Action (DISFA) [19] dataset.
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Table 3: ICC for intensity estimation on FERA 2017 Test partition.
Valstar Amirian Batista Zhou et al. Our modelet al. [27] et al. [1] et al. [3] [30]

AU1 0.035 0.169 0.228 0.307 0.400
AU4 -0.004 0.021 0.057 0.147 0.280
AU6 0.461 0.509 0.702 0.671 0.778

AU10 0.451 0.590 0.710 0.735 0.746
AU12 0.518 0.615 0.732 0.793 0.803
AU14 0.037 -0.027 0.104 0.147 0.143
AU17 0.020 0.190 0.260 0.319 0.380
Mean 0.217 0.295 0.399 0.446 0.504

DISFA dataset was annotated with AU intensity labels. To create binary AU occurrences,
we thresholded the 6-points intensity values at A-level (A-level or higher means the AU is
present). We evaluate both occurrence detection and intensity estimation performance of our
system.

In these experiments, we used the previously trained CNN models reported in Section
3.5. No fine tuning was performed on the target domain. We used the built-in face detector
in dlib [14] to detect the face before applying Procrustes analysis.

Both Ghosh et al. [9] and Baltrušaitis et al. [2] used BP4D to train their model, and
thresholded AU intensity values at A-level to create binary events. For a fair comparison,
we also report Accuracy and 2AFC scores, that Ghosh et al. [9] used. We outperform their
method in both metrics. Baltrušaitis et al. [2] report cross-domain scores only for two AUs
(AU 12 and AU17). Our models show better performance for both cases. These results show
the robustness of our model for cross-domain situation.

Table 4: Comparison of cross-domain performance to DISFA dataset for occurrence detec-
tion and intensity estimation.

Occurrence Detection
Intensity

Estimation
Accuracy 2AFC F1 ICC

Our [9] Our [9] Our [2] Our
AU01 0.932 0.838 0.714 0.660 0.475 - AU01 0.533
AU04 0.806 0.833 0.723 0.740 0.531 - AU04 0.560
AU06 0.860 0.703 0.758 0.870 0.567 - AU06 0.451
AU12 0.859 0.624 0.859 0.873 0.742 0.700 AU12 0.747
AU15 0.823 0.752 0.671 0.617 0.253 - AU15 -
AU17 0.738 0.689 0.742 0.585 0.361 0.260 AU17 0.319
Mean 0.836 0.740 0.745 0.724 0.488 - Mean 0.522

4 Conclusions

We addressed how design choices influence performance in facial AU coding using deep
learning systems, by evaluating the combinations of different components and their parame-
ters present in such systems.
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We found that the source domain in which pre-training was performed influenced the
performance of fine-tuning in the target domain. Counter-intuitively, generic pre-training
proved better, than a face specific one. Another important factor contributing to the perfor-
mance is the choice of different learning rates for different optimizers. We found that Adam
optimizer with small learning rate and SGD with large learning rate is optimal for expression
coding. Best parameters of the optimizers were similar for both AU occurrence and intensity
estimation, while varying the training set size and the type of image normalization had little
effect on performance.
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[25] Z. Tősér, L. A. Jeni, A Lőrincz, and J. F. Cohn. Deep learning for facial action unit
detection under large head poses. In Computer Vision - ECCV 2016 Workshops, pages
359–371, 2016.

[26] M. F. Valstar, T. Almaev, J. M. Girard, G. McKeown, M. Mehu, L. Yin, M. Pantic, and
J. F. Cohn. FERA 2015-second facial expression recognition and analysis challenge.
In 2015 11th IEEE International Conference and Workshops on Automatic Face and
Gesture Recognition (FG), volume 6, pages 1–8, 2015.

[27] M. F. Valstar, E. Sánchez-Lozano, J. F. Cohn, L. A. Jeni, J. M. Girard, Z. Zhang,
L. Yin, and M. Pantic. FERA 2017 - addressing head pose in the third facial expression
recognition and analysis challenge. In Automatic Face & Gesture Recognition (FG
2017), 2017 12th IEEE International Conference on, pages 839–847, 2017.

[28] X. Zhang, L. Yin, J. F. Cohn, S Canavan, M. Reale, A. Horowitz, and J. M. Gi-
rard. BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression
database. Image and Vision Computing, 32(10):692–706, 2014.

[29] Z. Zhang, J. M. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci, S. Canavan, M. Reale,
A. Horowitz, H. Yang, J. Cohn, Q. Ji, and L. Yin. Multimodal spontaneous emotion
corpus for human behavior analysis. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3438–3446, 2016.

[30] Y. Zhou, J. Pi, and B. E. Shi. Pose-independent facial action unit intensity regression
based on multi-task deep transfer learning. In Automatic Face & Gesture Recognition
(FG 2017), 2017 12th IEEE International Conference on, pages 872–877, 2017.


