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Abstract. Facial expression communicates emotion, intention, and phys-
ical state, and regulates interpersonal behavior. Automated face analysis
(AFA) for the detection, synthesis, and understanding of facial expression
is a vital focus of basic research with applications in behavioral science,
mental and physical health and treatment, marketing, and human-robot
interaction among other domains. In previous work, facial action unit
(AU) detection becomes seriously degraded when head orientation ex-
ceeds 15◦ to 20◦. To achieve reliable AU detection over a wider range of
head pose, we used 3D information to augment video data and a deep
learning approach to feature selection and AU detection. Source video
were from the BP4D database (n = 41) and the FERA test set of BP4D-
extended (n = 20). Both consist of naturally occurring facial expression
in response to a variety of emotion inductions. In augmented video, pose
ranged between −18◦ and 90◦ for yaw and between −54◦ and 54◦ for
pitch angles. Obtained results for action unit detection exceeded state-
of-the-art, with as much as a 10% increase in F1 measures.

Keywords: deep learning, facial action unit detection, pose dependence

1 Introduction

The face is one of the most powerful channels of nonverbal communication [3,
5]. Facial expression provides cues about emotion, intention, alertness, pain,
personality, regulates interpersonal behavior [4], and communicates psychiatric
[8] and biomedical status [10] among other functions.

There has been increasing interest in automated facial expression analysis
within the computer vision and machine learning communities. Several applica-
tions for related technologies exist: distracted driver detection [27], emotional
response measurement for advertising [23, 25], and human-robot collaboration
[2] are just some possibilities.

Given the time-consuming nature of manual facial expression coding and
the alluring possibilities of the aforementioned applications, recent research has
pursued computerized systems capable of automatically analyzing facial expres-
sions. The dominant approach adopted by these researchers has been to identify
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a number of fiduciary points on the face, extract hand-crafted or learned fea-
tures that can characterize the appearance of the skin, and train classifiers in a
supervised manner to detect the absence or presence of expressions.

Recently, deep learning based solutions have been proposed for coding holistic
facial expressions and facial actions units. Li et al. [21] used a convolutional
neural network (CNN) based deep representation of facial 3D geometric and
2D photometric attributes for recognizing holistic facial expressions. Liu et at.
[22] proposed an Action Unit aware deep architecture to learn local appearance
variations on the face and constructed a group-wise sub-network to code facial
expressions. Xu et al. [28] explored transfer learning of high-level features from
face identification data to holistic facial expression recognition. Only recently
did Jaiswal and Valstar [12] propose a deep learning approach for recognizing
facial action units under uncontrolled conditions. Action Units were coded using
a memory network that jointly learns shape, appearance and dynamics in a deep
manner.

Even though significant progress has been made [7], the current state-of-the-
art science is still limited in several key respects. Stimuli to elicit spontaneous
facial actions have been highly controlled and camera orientation has been frontal
with little or no variation in head pose. Head motion and orientation to the
camera are important if AU detection is to be accomplished in social settings
where facial expressions often co-occur with head motion [17, 1]. As the head pose
moves away from frontal, parts of the face may become self-occluded and the
classifier’s ability to measure expressions degrades. Here, we study the efficiency
of a novel deep learning method for AU detection under large head poses.

This paper advances two main novelties:

AU Detection under Large Head Poses with 3D Augmentation
In our work we use the BP4D spontaneous dataset and its extension detailed
in Sect. 2.2. An augmented dataset has been created using the 3D informa-
tion and renderings of the faces with broad range of yaw and pitch rotations.
We show that performance is high for the networks trained around different
pose directions opening the door for a number of useful applications.

Selective Gradient Descent Optimization
Threshold performance metrics (such as the F1 score) are piecewise-constant
functions and including them directly in the CNN cost function would de-
grade the convergence of the optimization method. In our algorithm, we
combined gradient descent with selective methods to overcome this issue.
This approach results in a small but highly effective network that outper-
forms the more complex state-of-the-art systems.

The paper is organized as follows. The method section (Sect. 2) contains
the overview of the architecture (2.1), the descriptions about database (2.2), its
extension (2.3), the facial landmark tracking method (2.4) and the deep learning
components (2.5). These descriptions are followed by our results (Sect. 3) and
the related discussion (Sect. 4). We conclude in the last section (Sect. 5).
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Fig. 1. Overview of the system. The original image underwent face tracking and was
pre-processed in three different ways; Histogram of Gradients (HoG), similarity nor-
malized (scaled and cropped), and cut and put together from patches around landmark
positions (Mosaic). Training methods included Support Vector Machine (SVM), Con-
volutional Neural Networks (CNN) in single and multi-label versions.

2 Methods

2.1 Architecture

The main steps of pre-processing, such as face detection, mesh fitting, pose
estimation are depicted in Fig. 1. Details are to follow below.

2.2 BP4D-Spontaneous Dataset

We used the BP4D-Spontaneous dataset [31] from the FERA 2015 Challenge
[26]. This database includes digital video of 41 participants (56.1% female, 49.1%
white, ages 18-29). These individuals were recruited from the departments of psy-
chology and computer science and from the school of engineering at Binghamton
University. All participants gave informed consent to the procedures and per-
missible uses of their data. Participants sat approximately 51 inches in front of a
Di3D dynamic face capturing system during a series of eight emotion elicitation
tasks. Target emotional expressions include anxiety, surprise, embarrassment,
fear, pain, anger, and disgust. Example tasks include being surprised by a loud
sound, submerging a hand in ice water, and smelling rotten meat. For each task,
the 20-second segment with the highest AU density was identified; this segment
then was coded for AU onset (start) and offset (end) by certified and reliable
FACS coders.

The FERA 2015 Challenge [26] employed the 41 subjects from BP4D - Spon-
taneous dataset [31] as a training set. In this paper we refer this subset as ”Train”
set. Additional videos from 20 subjects were collected using the same setup and
were used for testing in the challenge [26]. In this paper we refer this subset as
”Test” set.
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2.3 Database extension

The subjects in the BP4D-Spontaneous dataset exhibit only a moderate level of
head movements in the video sequences. The dataset [31] comes with frame-level
high-resolution 3D models. To validate the proposed method on larger viewpoint
angles, an augmented dataset has been created using the 3D information and
renderings of the faces with different yaw and pitch rotations. We used all the
FACS coded data to synthesize the rotated views.

2.4 Facial Landmark Tracking and Face Normalization

The first step in automatically detecting AUs was to locate the face and facial
landmarks. Landmarks refer to points that define the shape of permanent fa-
cial features, such as the eyes and lips. This step was accomplished using the
ZFace tracker [14, 15], which is a generic tracker that requires no individual-
ized training to track facial landmarks of persons it has never seen before. It
locates the two- and three-dimensional coordinates of main fiducial landmarks
in each image. These landmarks correspond to important facial points such as
the eye and mouth corners, the tip of the nose, and the eyebrows. The moderate
level of rigid head motion exhibited by the subjects in the BP4D-Spontaneous
dataset was minimized as follows: facial images were warped to the average pose
and face using similarity transformation on the tracked facial landmarks. The
average face has been normalized to have 100 pixels inter-ocular distance and
normalized images were cropped to 256x256 pixels. This procedure created a
common space, where variation in head size and orientation would not confound
the measurement of facial actions.

2.5 Deep learning

Deep learning aims to overcome the curse of dimensionality problem of MLPs
via a number of architectural inventions. The increase of the number of layers
lessens the transformational tasks of each layer. Rectified linear units (ReLUs)
are favoured, since their sensitive range is large, the rectification can efficiently
shatter the space, and supervised training does not require unsupervised pre-
training (see [9] and the references therein).

Layers of the Network. Convolutional layers make another efficient innova-
tion. They are particularly useful for images. One can view each layer as a set
of trainable template matchings [6]. It has the following attractive properties:
(a) The templates (also called filters) can be matched at each pixel of the im-
age relatively quickly due to the convolution operation itself [20]. The result for
each filter is called the feature map. (b) While the number of neurons can be
large, still the number of variables, the weights, is kept low, saving in memory
requirements and decreasing the curse of dimensionality problem. (c) Each con-
volutional layer may be followed by a subsampling layer. The role of this step



Deep Learning for Facial Action Unit Detection under Large Head Poses 5

Fig. 2. Deep neural network, main components: convolutional layers with ReLUs (CL),
pooling layers (PL), fully connected layers (FC), output layer with logistic regression
(OL). There are two versions. (a): CL-PL-CL-PL-FC-FC-OL, (b): additional CL be-
tween the second PL and the first FC layer.

is to decrease the number of units that scale as the product of the dimension of
the input of that layer and the number of filters. Max-pooling that solicits the
largest response in each pooling region is one of the preferred methods. The ef-
fective result of pooling is that the precision of the feature map degrades, which
is nicely compensated by the number of feature maps and the option of further
convolutional processing steps without explosion in the number of units. Sub-
sampling also reduces overfitting. For more details, see [19] and the references
therein.

Convolutional networks typically add densely connected layers after the con-
volutional layers, often made of ReLUs. Our architecture is sketched in Fig. 2.

We used typical regularization, stabilization, early stopping, and local min-
ima avoiding procedures [24] with a reasonably small network and we found that
larger networks would not improve performance considerably. The parameters
and some procedures of the architecture are as follows:

(a) The dimension of the input layer is 256 × 256. The original three channel
color images were converted to a single grayscale channel and the values
were scaled between 0 and 1.

(b) The first and second convolutional cascades have 16 filters each, with 5× 5
in the first and 4× 4 pixels in the second cascade. The stride was 1 in both
cases. Max pooling was 4 × 4 and 2 × 2 applied with a stride of 4 and 2,
respectively. Occasionally a third convolutional layer with 16 filters of 3× 3
pixels each was added when the representation power of the architecture was
questioned (Fig. 2).

(c) There are two densely connected layers of 2,000 ReLU units in each.
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(d) The output is a sigmoid layer for the action units. Special procedures include
dropout before the two dense and the sigmoid layers with 50% rate. Gradient
training is controlled by Adamax (see later). Minibatch size is 500.

(e) The cost function to be minimized has two components, the sum of two
terms, a regularizing `2 norm for the weights and the binary cross-entropy
cost on the outputs of the network. This latter takes the average of all cross
entropies in the sample: assume that we have 1 ≤ n ≤ N samples with
binary labels yn ∈ {−1,+1} and network responses ŷn for all n. The loss
function is

J(ŷ1, . . . , ŷn) =
1

N

N∑
n=1

yn log ŷn + (1− yn) log(1− ŷn). (1)

where the proper range of estimation is warranted by the logistic function:
ŷn(z) = 1/(1 + e−θz) with z being the input to the nth output unit and θ
being a trainable parameter.

Early stopping Training stops early if performance over the validation set is
not improving over, say m epochs. This way overfitting becomes less probable.
In our case, m = 5 was chosen. F1 score is the typical measure for face related
estimations. However, F1 score has discontinuities and constant regions making
it dubious for gradient based methods. Our approach that aims to overcome
this problem is the following: we computed the gradient for the binary cross-
entropy, but used the F1 score as performance measure in the validation step.
This way, gradient descent was guided by the F1 score itself. The high quality
results that we reached with a relatively simple network may be partially due to
this procedure.

Cross-validation All the results and methods reported on the ”Train” set have
been validated with a 10-fold, subject-independent cross-validation. In the other
experiments we trained on the ”Train” set and reported performance measures
on the ”Test” set, following the challenge protocol [26].

Details of the Backpropagation Algorithm. Beyond the advances of GPU
technology and deep learning architectures, error backpropagation also under-
went fast and efficient changes. We used one of the most recent methods called
Adamax [18]. It is a version of the Adam algorithm, a first-order gradient-based
optimization, designed for stochastic objective functions exploiting adaptive es-
timates of lower-order moments. Adam estimates the `2 norm of the current
and past gradients. If the gradients are small, the step size is made larger; in-
verse proportionality is applied. Adamax generalizes the `2 norm to `p norm and
suggests to take the p→∞ limit. For more details, see [18].

Applied Software. There are many implementations of deep learning, mostly
based on Python or C++. For a comprehensive list of software tools, today,
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the link http://deeplearning.net/software_links/ is a good starting point.
We used Lasagne, a lightweight library built on top of Theano. Theano (http:
//deeplearning.net/software/theano) has been developed by the Montreal
Institute for Learning Algorithms. It is a symbolic expression compiler that works
both on CPU and on GPU and it is written in Python.

3 Results

First, we evaluated the performance on the FERA Train set, employing a 10-fold,
subject independent CV. According to Table 1, HoG based SVM is the best for
AU14 and AU15, and performance is superior for AU15. The representation at
around the decision surface seems superior for these AUs. For the other AUs, SNI
based CNNs with single AU classification are better. Multi-label classification is
somewhat worse for almost all AUs, but let us note that these evaluations are
faster, time scales linearly with the number of AUs for the single AU case.

Table 1. F1 measures on the FERA BP4D Train set with different classifiers (C), input
features (IF) and output label (OL) structures. The input features are Histogram of
Gradients (HOG), mosaic images (MI), and similarity normalized images (SNI). The
output structures are either single- (S) or multi-label (M).

C IF OL
Action Units

1 2 4 6 7 10 12 14 15 17 23 Mean

S
V

M
H

O
G

S 0.44 0.29 0.45 0.77 0.75 0.81 0.87 0.62 0.39 0.58 0.41 0.58

C
N

N M
I

M 0.22 0.01 0.43 0.76 0.64 0.77 0.85 0.47 0.00 0.27 0.00 0.40

S
N

I S 0.63 0.44 0.54 0.82 0.80 0.85 0.90 0.58 0.27 0.60 0.45 0.63

M 0.55 0.38 0.53 0.80 0.75 0.83 0.90 0.55 0.23 0.59 0.37 0.59

Table 2. Results on the FERA BP4D Test set with multi-label CNN and SNI. Per-
formance measures include F1 score, its skew normalized version (F s.n.

1 ) [13], and area
under ROC curve (AUC). The table shows the degree of skew (ratio of negative and
positive labels) for each AU.

Action Units

1 2 4 6 7 10 12 14 15 17 23 Mean

skew 15.31 20.02 12.23 2.11 0.66 1.01 1.37 0.98 11.78 6.81 6.78 7.19
F1 0.26 0.23 0.27 0.76 0.75 0.8 0.8 0.64 0.26 0.38 0.3 0.50

Fs.n.
1 0.74 0.67 0.69 0.84 0.7 0.8 0.83 0.64 0.43 0.68 0.38 0.67

AUC 0.84 0.79 0.76 0.92 0.77 0.88 0.92 0.72 0.75 0.77 0.74 0.81
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Fig. 3. F1 measures as a function of yaw rotation on the augmented BP4D Train set,
using the single-label classifier.

Fig. 4. F1 measures as a function of pitch rotation on the augmented BP4D Train set,
using the single-label classifier.

In the next experiment we trained the system on the FERA 2015 Train set,
and tested it on the Test set. The AU base-rates are significantly different on
these subsets [26] and F1 score is attenuated by skewed distributions [13]. For
this reason we report the degree of skew, F1 score, its skew normalized version
(F s.n.1 ) [13], and area under the receiver operating characteristic (ROC) curves.
The AUC values are shown in Table 2 for the FERA BP4D test set, where skew
parameters range between 1 and 20.

Head pose has three main angles, roll, yaw and pitch. Roll can be compen-
sated in the frontal view by the normalization step. The case is more complex
for non-frontal views. We studied yaw and pitch angles around the frontal view.
Yaw is symmetric in this case and we show data for (−18◦,+18◦) ranges around
head poses 0, 18, 36, 54 and 72 degrees that covers the full frontal–to–profile
view range. Angle dependence is relatively large for AU4, AU15, and AU23, but
the mean F1 score is a weak function of the head pose angle (Fig 3).

We studied the asymmetric pitch around the frontal view for (−18◦,+18◦)
ranges around -36, -18, +18, and +36 degrees. The mean F1 score is also a weak
function of the pitch angle. AU1, AU4, and AU23 are affected by this angle more
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Fig. 5. Occlusion Sensitivity Maps [30]. (a): cropped 256×256 pixel images are covered
by uniform grey 21×21 pixel patches at around pixels of a 32×32 pixel grid uniformly
placed over the image. (b)-(n): the modified images are evaluated for binary cross-
entropy performance. Performance is color coded at the central pixel of the patch and
the 32× 32 image is depicted for the different AUs.

strongly than the other AUs (AU2, AU6, AU7, AU10, AU12, AU14, AU15, and
AU17), see, Fig. 4.

Occlusion sensitivity maps [30] were generated for the different action units.
We used 200 images for each subject, giving 8,200 images for the map genera-
tions. At around certain pixels, the pixels of the 21×21 sized patches were set to
0.5, the middle of the normalized range, [0, 1]. Central pixels were laid uniformly
on each image at 32 × 32 = 1, 024 positions. The modified images, more than
8 million, were then tried on the trained network for each AU and the binary
cross-entropy measure was computed. Results are shown in condensed form, the
value is color coded on a 32× 32 occlusion sensitivity map in Fig. 5.

We end the result section by comparing our results with the most recent
ones reported in the literature, the Local Gabor Binary Pattern (LGBP) [26],
the geometric feature based deep network (GDNN) [12], the Discriminant Lapla-
cian Embedding (DLE) [29], Deep Learning with Global Contrast Normalization
(DL) [11], and the Convolutional and Bi-directional Memory Neural Networks
(CRML) [12] methods. DLE wins for AU15, CMLR is the best for AU10, and
AU 14, and DL performs the best for AU1 and AU2. Our architecture comes
first for the other AUs, with one exception, the single label case wins. Since the
multi-label case is considerably harder, we suspect that better training can im-
prove the results further, e.g., by adding noise to the input on top of the dropout
and/or increasing the database.

The single label case produced the best mean value. A special difference
between the CMRL method and ours is that we can work on single images,
whereas CMRL requires frame series. Furthermore, the inclusion of temporal
information should improve performance for our case, too.
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Table 3. Comparison of the single-label (SL) and multi-label (ML) version with other
methods in the literature.

Action Units

1 2 4 6 7 10 12 14 15 17 23 Mean

LGBP [26] 0.18 0.16 0.22 0.67 0.75 0.8 0.79 0.67 0.14 0.24 0.24 0.44
GDNN [12] 0.33 0.25 0.21 0.64 0.79 0.8 0.78 0.68 0.19 0.28 0.33 0.48
DLE [29] 0.25 0.17 0.28 0.73 0.78 0.8 0.78 0.62 0.35 0.38 0.44 0.51
DL [11] 0.40 0.35 0.32 0.72 0.78 0.80 0.79 0.68 0.24 0.37 0.31 0.52

CRML [12] 0.28 0.28 0.34 0.7 0.78 0.81 0.78 0.75 0.2 0.36 0.41 0.52
this (ML) 0.26 0.23 0.27 0.76 0.75 0.8 0.8 0.64 0.26 0.38 0.3 0.50
this (SL) 0.34 0.21 0.40 0.74 0.82 0.81 0.83 0.73 0.25 0.44 0.47 0.55

4 Discussion

Recent progress in convolutional neural networks (e.g., [30, 22, 28, 12] and see
also the general review [24] and the cited references therein) shows that Deep
Neural Networks, including CNNs are flexible enough to compete with hand-
crafted features, such as HoG, SIFT, Gabor filters, LBP, among many others.
The adaptivity of the CNN structure tunes the convolutional layers of the CNN
to the database according to the statistics of the data. The fully connected layers,
on the other hand, serve to collect, combine and exclude certain portions of the
image.

The big progress is due to the tricks of avoiding local minima during the
training procedure and the collection of such methods keeps increasing. We used
high dropout rates, early stopping, and rectified linear units to overcome the dan-
ger of falling into one of the local minima too early during training. We have no
doubt that this quickly developing field will come up superior solutions and per-
formance will increase further. The maturation of deep learning neural network
technologies offer great promises in the field of facial expression estimations.

The success of our relatively small network is most probably due to another
additional trick; we combined gradient descent with selective methods. Although
the contribution of this trick that we detail below is hard to grab quantitatively,
we should note that we used no binary mask [12], no temporal extensions [12,
16], known to have a considerable impact on performance.

The problem of optimization lies in the dubious F1 score, which is not a
good cost function, due to its discontinuities and flat, constant regions. Instead,
a closely related quantity, the binary cross-entropy is preferred for gradient com-
putations. Selection does not require well behaving, smooth costs and it can be
introduced into the procedure at the validation step that guides early stopping.
If performance is not improving on the validation set for a number of steps, in
spite of the fact that it still does on the training set, then the gradient procedure
should be stopped, since a local minimum of the training set is approached. Upon
early stopping a new minibatch can be used for improving the performance.
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This validation step can serve the selective process if gradient descent is
stopped according to a different measure instead of the cost function. In our
case, this measure was the F1 score. It should be noted that the ideal values for
the F1 score and the binary cross entropy are the same, although they are rarely
reached for real problems.

Clearly, special procedures, such as binary masks and temporal information
should improve our results further, alike to performance increases in the studies
mentioned previously.

Our main finding is that performance is a weak function of the head pose for
CNNs and it remains high for a broad variety of angles. This opens the possi-
bility of many real-life applications from cyber-physical systems with human in
the loop, including smart factories, medical cyber-physical systems, independent
living situation among many others. Furthermore, insights, sometimes of diag-
nostic value can be gained for affective disorders, addiction, and social relations.
The progress of GPU technology will provide further gains in evaluation time
that will decrease training time and evaluation frequency, too. The single-label
version of our system runs at 58 FPS, while the multi-label version reaches over
600 FPS on a Titan X GPU.

Real life applications may require ”in the wild” databases. This point remains
to be seen.

5 Conclusions

Recent progress in deep learning technology and the availability of high quality
databases enabled powerful learning methods to enter the field of face processing.
We used these deep learning methods and the BP4D database for training an ar-
chitecture for action unit recognition. Our results surpassed the state-of-the-art
for images and could be further improved if temporal information is available.
The main result is that angle dependence is minor, a large yaw and pitch range
can be covered without considerable deterioration in performance. In turn, rel-
evant applications from human-computer interaction to psychiatric interviews
may gain momentum by applying such tools.
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