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Viewpoint-consistent 3D Face Alignment
Sergey Tulyakov, László A. Jeni, Jeffrey F. Cohn, and Nicu Sebe

Abstract—Most approaches to face alignment treat the face as a 2D object, which fails to represent depth variation and is vulnerable to
loss of shape consistency when the face rotates along a 3D axis. Because faces commonly rotate three dimensionally, 2D approaches
are vulnerable to significant error. 3D morphable models, employed as a second step in 2D+3D approaches are robust to face rotation but
are computationally too expensive for many applications, yet their ability to maintain viewpoint consistency is unknown. We present an
alternative approach that estimates 3D face landmarks in a single face image. The method uses a regression forest-based algorithm that
adds a third dimension to the common cascade pipeline. 3D face landmarks are estimated directly, which avoids fitting a 3D morphable
model.The proposed method achieves viewpoint consistency in a computationally efficient manner that is robust to 3D face rotation.
To train and test our approach, we introduce the Multi-PIE Viewpoint Consistent database. In empirical tests, the proposed method
achieved simple yet effective head pose estimation and viewpoint consistency on multiple measures relative to alternative approaches.

Index Terms—Face alignment, 3D face shape, morphable model

F

1 INTRODUCTION

O VER the last several years 2D face alignment has reached
maturity making it possible to detect landmarks in the wild

at very high frame rates [12], [27], [32], [44], [48]. These works
can be grouped into three main categories [62]: Constrained Local
Models (CLM) [4], [15], [48], [49], [73], Active Appearance
Models (AAM) [14], [17], [19], [25], and more recent Cascaded
Regression Methods (CRM) [27], [31], [55], [67], [78]. Up-to-
date the notable achievements in the area are closely related to
CRM. These methods are advantageous over the AAM and CLM
based approaches in several respects: (i) running a sequence of
regressors is faster than solving an optimization problem for every
image, (ii) the offline training stage allows cascaded approaches
to take advantage of the large available sets of training images,
(iii) shape-invariant feature sampling makes these methods robust
to rotations.

A typical face alignment task treats the face as a 2D object
and is stated as follows: given an input image and the initial
face location, determine the location of the main keypoints or
landmarks of the face. Since 3D information about the face shape
is lost, there are two main limitations of this formulation. Firstly,
some of the landmarks can be hidden due to self-occlusions of
the face. In the literature, this issue is tackled by detecting the
nearest visible landmarks. This changes the natural face shape,
since the landmarks no longer have semantic correspondence. The
second limitation of the standard face alignment formulation arises
in a multi-camera environment or in a face video (such as in
Figure 1a), where several views/shots are available for the same
scene. Ideally, the face keypoints detected for the same person
using different cameras or for different frames in a video, must
be consistent, since the underlying shape is the same. Classical
approaches, however, fail to provide the desired consistency since
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they operate independently across frames/viewpoints. The latter
limitation is due to the absence of publicly available 2D face
databases annotated in a viewpoint consistent 3D fashion.

To some extent, these limitations have been tackled in the
literature by 2D-3D works [12], [27]. These methods first detect
2D landmarks and as a second step fit a previously learned high
resolution 3D face model to estimate a face shape. The resolution
of the final 3D shape is comparable to depth-based methods [38],
[56], [63], [64]. However, in many applications this high precision
face shape estimation is not always required, while frame rates
and low hardware requirements often become more critical [23],
[57], [70]. Since these methods estimate a 3D shape of the face
they naturally tackle the self occlusion problem at the price of a
computationally expensive second step. Although 2D-3D methods
estimate a person specific shape and keypoints for a face in the
image, to the best of our knowledge, no study has been performed
to evaluate their ability to preserve viewpoint consistency.

To overcome the first limitation and remove the redundant
second step of 2D-3D works, we discuss a cascaded regressor-
based method to estimate a set of 3D keypoints of a face from a
single 2D image in a single step. Motivated by the recent success
of sequential approaches for 2D face alignment, we discuss the
framework that naturally detects 3D landmarks positions from a
single image at state-of-the-art accuracy and processing speed.
By starting with a set of mean 3D face keypoints, our method
produces a sequence of 3D increments that move each landmark
towards its desired location. In contrast with existing 2D-3D
works, the method is capable of performing 3D face alignment
in a single step. We perform standard evaluation of our method
on a large corpus of 2D images rendered from the BU-4DFE [71].
Additionally, we provide a simple head pose estimation method,
based on the predicted 3D shape, that outperforms available state-
of-the-art systems.

The second limitation of the classical face alignment task is
removed by introducing a new formulation of face alignment, i.e.
by performing face alignment in a viewpoint-consistent manner.
Given that every view of the face captures the same underlying
shape, viewpoint-consistent face landmarks (Figure 1a) represent
the same 3D structure with respect to the common coordinate



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

(a) (b)

Fig. 1: Viewpoint-consistent 3D landmarks (a) represent the same underlying 3D structure for every frame (b)

system (Figure 1b). The lack of viewpoint-consistent alignment
works in the literature can be explained by the absence of publicly
available face datasets with viewpoint-consistent 3D annotation.
To bridge this gap, we introduce the MultiPIE-VC (viewpoint-
consistent) dataset that contains 3D annotations for 2D MultiPIE
images. To evaluate viewpoint consistency of our method in
comparison with the state-of-the-art 2D-3D methods we introduce
several metrics, each highlighting different aspect of viewpoint
consistency.

For the rest of the article vectors (a) and matrices (A) are
denoted by bold letters. The Euclidean norm of vector u ∈ Rd

is ‖u‖2 =
√∑d

i=1 u
2
i . The concatenation of matrices Ak ∈

Rdk×N is denoted by B = [A1; . . . ; AK ] ∈ R(d1+...+dK)×N .
Capital script letters (A) denote sets.

2 RELATED WORK

Since there is no prior work on viewpoint-consistent face align-
ment, in the following we review the up-to-date standard face
alignment approaches. We also compare the face databases most
widely adopted by the community to provide the context for our
MultiPIE-VC database.

2.1 Face alignment
Automatic face alignment is a highly researched area in computer
vision. Since the first works on Active Shape Models (ASM) by
Cootes et al. [13], [15] decades ago, face alignment has seen a
significant improvement with a tremendous boost made recently.
According to [62] face alignment methods can be categorized into
three broad categories: Constrained Local Models (CLM), Active
Appearance Models (AAM) and Cascaded Regression Methods
(CRM). However, for the purpose of the current study, we use an
alternative classification. We distinguish three groups of methods
based on their final outcome. The first group contains 2D methods
that given a face image produce 2D face landmarks. Methods
of the second group provide a 3D face shape estimate, by first
finding 2D pixel locations using a method from the first group.
We, therefore, refer to these methods as 2D-3D. Methods of the
third group provide 3D face keypoints for a face image directly
avoiding the redundant second step.

2D methods. This avenue of research has started with
ASM [13], [15] which belongs to the group of CLM methods,
according to the classical classification. The basic idea is to
represent an arbitrary 2D shape with a set of local appearance
models. Then a global model is used to make a final decision
about the shape. AAM methods [14], [19], [40] learn a global

model of the shape and grayscale appearance jointly. Having this
model, to perform face alignment one has to find a set of possible
parameters that could have generated the query face. Despite their
long history CLM and AAM are still highly used methods for
face alignment in the literature (CLM [4], [48], [49], [73] and
AAM [17], [25], [59]).

Modern face alignment is driven by CRM methods that ini-
tially originated in the medical image processing community [77].
In addition to dramatic performance gain [10], [58], [67], [68],
[69], [78] these methods show impressive frame rates, being
able to perform face alignment in one millisecond [32] or even
less [44]. Importantly, CRM methods are able to naturally adopt
large amounts of input data available on the Internet. In contrast,
with optimization-based AAM and CLM methods, CRMs operate
in a cascaded fashion. At every level of the cascade a regressor is
learned to move the prediction closer to its desired location.

More recently, several CRM frameworks, based on training
Deep Convolutional Neural Networks (CNN) have been intro-
duced. In [74] a sequence of Deep Regression Networks is trained.
To tackle the occlusion problem, a set of de-corrupt autoencoders
is used. By combining the ability of a Recurrent Neural Network
(RNN) to memorise previous events and using a CNN as a
feature extraction function, the authors of [54] propose an end-
to-end trainable method to localize facial landmarks. Although
these works show state-of-the-art accuracy, they do not address
viewpoint consistency of face shapes. Additionally, since these
works are based on learning deep architectures, they require large
training datasets and demand powerful hardware to achieve real-
time frame rates. In the current study, we avoid using deep
architectures to be able to maintain high frame rates and low power
hardware requirements.

2D-3D methods. The output of the methods from the previous
group is a set of 2D points in the image. Although, 2D-3D methods
are typically based on 2D methods, their final goal is estimating a
3D face shape from a single image [6], [70], set of images [27],
[46] or a video [27], [45]. Therefore, they can be referred to as
two-step methods [55], performing 2D face alignment as the first
step, and estimating a 3D shape as the second.

In this group, many works are done in the context of pose-
invariant face recognition [6], [43], [52], [70]. The classical work
of Blanz and Vetter [6] uses manual initialization as the first step,
followed by fitting a 3D model. They achieve very accurate face
models at a cost of low processing speed. In [70] a low resolution
model is fit to 2D landmarks for determining feature sampling
points. Although the final model is far from being perfect, the
authors report improvement in face recognition results, while
getting reasonable processing speed. The problem of estimating
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a face shape is tackled from a different perspective in [23]. This
work presents a SIFTFlow-based [39] method to warp a depth-
RGB image pair of a reference person to a single RGB image of
a query person. Consequently, the method is rather slow and can
estimate depth only for visible parts of the face. Again, the first
step is performed by the 2D face alignment system of [79].

Cao et al. [9] tackles the problem of automated avatar anima-
tion. They propose to jointly estimate a parametric 3D face model
together with 2D landmarks from a video of a human performer.
The method uses the landmarks estimated for the previous frame
to simultaneously regress the 3D and 2D shapes for the current
frame. However, when applied to a single image, the previously
estimated landmarks are not available, and the method requires
2D landmarks estimated using [10] as an initialization, which
makes it a two-step method according to our classification. Their
approach requires just a video stream to operate, reaching results
close to modern methods assuming RGB-D as the input [24],
[38]. An interesting application of face tracking and reconstruction
technology is presented by Thies et al. in [53]. They present a real-
time performance capture system for face reenactment using RGB
videos only. The system features photo-realistic quality. Similarly
to other methods of this group their pipeline is two step.

The major difference of this work with respect to the pre-
viously described two-step works is that our method is single-
step and requires only a single image. A key advantage of our
single-step method is that it is faster, since it does not require
computationally expensive 3D model fitting, while is able to
accurately estimate the third dimension of the interest points.

3D methods. This is a recently emerged group of methods
with only several works available in the literature [31]. The
idea is to avoid the sometimes unnecessary second step of the
methods from the previous group. Clearly, the absence of 3D
annotated 2D images is a critical problem for such methods.
In [80] a 3D morphable model is used to annotate the available
2D datasets. These annotations are then used to train several
CNNs in a cascaded manner. There is, however, a major problem
with these annotations, since existing methods for single image
face reconstruction on monocular cameras tend to suffer from
only ”hallucinating” a 3D shape from a 2D image. A single
2D image does not directly provide enough information for the
reconstruction, i.e. 3D shapes can look the same when projected
to 2D, while being different in the third dimension. As discussed
in Section 2.2 only few databases contain multiple views for every
subject. The method we discuss in this study belongs to this group.

Viewpoint-consistent 3D face alignment. The goal of this
paper is to propose to the community a new research direction
in face alignment. Consider a subject captured from several
viewpoints (see Figure 2), or a video of a face where the viewpoint
changes constantly (see Figure 1). Clearly, the underlying face
shape remains the same, and therefore, it should be consistent
between frames/viewpoints. However, 2D methods do not show
this consistency, since they are only able to detect the visible
points. Methods from 2D-3D group offer some form of viewpoint
consistency at a price of employing the computationally expensive
second step. Moreover, during the first step face alignment is
performed in a classical inconsistent manner.

Methods from the 3D group, are the closest to our idea.
However, there is no study available investigating if their outputs
are consistent between the viewports. Importantly, to the best of
our knowledge there exists no benchmark database containing 3D
annotations for a 2D face database.

Viewpoint-inconsistent landmarks

Viewpoint-consistent landmarks

Fig. 2: Top: conventional viewpoint-inconsistent landmarks. Bot-
tom: 3D landmarks annotated in a viewpoint-consistent manner.
Right: landmarks from different viewpoints plotted in the com-
mon coordinate system. The third dimension of the inconsistent
landmarks was estimated by fitting a 3D deformable model to the
estimated 2D landmarks (Section 4). Bringing the landmarks to
the common coordinate system is discussed in Section 5.3.

2.2 Face databases

Over the last decade a large number of face databases were
made available to the community. Many of these were created
for different purposes in the face analysis domain. First databases
were created for face identification and verification (BioID [30],
Texas3D [22]). Another group of databases was aimed at conduct-
ing facial expression recognition research (MultiPIE [20], BU-
3DFE [72], BU-4DFE [71]) or Action Units recognition (BP4D-
Spontaneous [75]). The third group was specifically created for
face alignment tasks (AFLW [34], Helen [37], COFW [8]).
Regardless of their initial purpose, all these databases contain
annotation of a specific number of facial landmarks, making it
possible to use them in face alignment research.

Table 1 shows a comparison of the databases used for face
alignment research. Initially, the first face databases were created
in controlled laboratory environment and recently the focus shifted
to more unconstrained conditions. This is due to the saturation
of standard face alignment performance on laboratory-controlled
databases. The databases vary in the number of subjects, the total
number of images, the number of available landmarks and the
presence/absence of several shots/views for each subject, which is
the most important aspect for our study.

Specifically, for viewpoint-consistent 3D face alignment the
availability of several views for the same subject and the presence
of viewpoint-consistent 3D landmarks are required. None of the
outlined database in Table 1 possesses both requirements. A slight
exception can be made for databases containing 3D meshes of
faces (such as XM2VTS [41], BU-3DFE [72], BU-4DFE [71]
and BP4D-Spontaneous [75]), since these meshes can be used
to generate multiple random views of the subjects, allowing the
algorithms to be trained and tested in a viewpoint-consistent
manner [27], [55]. This, however, has some limitation, as the
rendered meshes are no longer captured by a real camera, and
the quality of the generated images depends on the models of the
renderer. HPDB [2] is a recent database for head pose estimation
and face alignment. It contains 120 face videos of 12 subjects (6
male and 6 female). Despite the database includes 3D points, its
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TABLE 1: Comparison of available databases that were used for face alignment in the literature.

Database Year Modality Images/Videos Conditions # subjects # views # images # landmarks

XM2VTS [41] 1999 RGB + Depth images controlled 295 6 2360 68
BioID [30] 2001 RGB + Depth images in the wild 23 1 1521 20
BU-DepthFE [72] 2006 RGB + Depth images controlled 100 Depth1 2500 83
LFW [26] 2007 RGB images in the wild 5749 ≥12 13233 11
Multi-PIE [20] 2008 RGB images controlled 337 15 750K 68
BU-4DFE [71] 2008 RGB + Depth videos controlled 101 Depth1 60K 683

Bosphorus [50] 2008 RGB + Depth images controlled 105 13 4666 24
Texas Depth [22] 2010 RGB + Depth images controlled 118 1 1149 25
MUCT [42] 2010 RGB images controlled 276 1 3755 76
AFLW [34] 2011 RGB images in the wild n/a 1 25K 21
LFPW [5] 2011 RGB images in the wild n/a 1 1400 39
AFW [79] 2012 RGB images in the wild n/a 1 205 6
Helen [37] 2012 RGB images in the wild n/a 1 2300 194
300-W [47] 2013 RGB images in the wild n/a 1 62654 68
COFW [8] 2013 RGB images in the wild n/a 1 1007 295

FaceWarehouse [11] 2014 RGB + Depth images controlled 150 20 3000 74
BP4D-Spontaneous [75] 2014 RGB + Depth videos controlled 31 Depth1 300K 84
HPDB [2] 2016 RGB videos controlled 12 1 36K 54

1 For depth databases multiple views can be generated artificially
2 For some subjects several views/shots are provided
3 68 landmarks for selected frames are provided in [55]

4 Combines AFW, LFPW, Helen, XM2VTS
5 Additionally for each landmark visible/occluded labels are given

use for viewpoint-consistent alignment is limited, as it provides
only 12 subjects captured under a constrained laboratory setting.
Moreover, the dataset employs an uncommon 54 points markup,
making it impossible to use it for testing purposes, as the markup
is not compatible with other face datasets.

Multi-view databases, such as MultiPIE [20] and multi-image
databases (XM2VTS [41], LFW [26]) contain multiple images
from different perspectives of the same subjects, which afford an
attractive corpora for viewpoint-consistent alignment. However,
these databases lack viewpoint-consistent landmarks and anno-
tations of the third dimension, making it impossible to develop
viewpoint-consistent methods using these databases.

To bridge this gap we introduce MultiPIE Viewpoint Consis-
tent (MultiPIE-VC), a subset of the commonly adopted MultiPIE
database, with the viewpoint-consistent 3D annotations of 66
facial landmarks. Up to the authors knowledge, this is the first
benchmark suitable for viewpoint-consistent 3D face alignment.

3 METHOD

There are several major differences as compared to the standard
cascaded regression works: (i) our shape estimates are 3D, (ii)
we propose and compare three methods for 3D feature indexing,
and (iii) we show a simple yet efficient head pose estimation
method showing better or highly competitive scores on various
benchmarks as we show in Section 5.2.

3.1 A framework of cascade regressors
A general cascade regression approach produces an estimate Ŝ of
facial landmarks S for an image of a face I by producing several
increments ∆St (t = 1, ..., N ) at every level t of the cascade in
the following fashion:

∆St = rt(Ht(I, Ŝt−1)), (1)

Ŝt = Ŝt−1 + ∆St, (2)

whereHt is a feature extraction function, rt is a regressor function
learned at the tth-level of the cascade and N is the total number

of levels in the cascade. A shape vector S = [x1; x2; ...,xn]
represents a set of facial landmarks. We denote Ŝ = r(I, S̄) as
the final estimate made by the cascade of regressors r(·, ·) for an
image I and the initial guess S̄.

In previous works, every point xi of the face shape vector
was represented either by x, y-coordinates in the image, or was
augmented by an additional label mi that represents a flag indi-
cating whether a point is visible or occluded: xi = [xi; yi;mi.
Hereinafter we drop the index i and write x to denote a point of a
shape to simplify the notation. Instead of adding an extra flag for
every point we augment the usual x, y-coordinates of a point in
the plane with the z-coordinate of the landmarks in the 3D space.
Having a third dimension in the training set at every step of the
cascade we learn the 3D shape increment ∆St ∈ Rn×3.

The feature extraction function Ht(I, Ŝt−1) in Eq. 1 depends
not only on image I but also on the previous shape estimate Ŝt−1,
this allows the cascade to extract shape independent features. We
propose to extend a face shape with the third dimension so that
∆ St, Ŝt, S ∈ Rn×3. Several models can be used as a regressor;
we train a number of regression trees at each level of the cascade,
since they have shown remarkable results in the literature [32],
[44].

3.2 From world coordinates to 3D landmarks
To learn a face landmarks predictor one has to decide upon the
landmarking scheme and perform annotation of the available train-
ing data. In our case, such annotation is hardly possible even for
a human annotator due to the difficulty to estimate a z-coordinate
by observing just a single 2D image. However, we propose the
solution based on performing the 2D annotation as usual, and
then augmenting the annotation of the z-coordinate estimated in
a different way. To do so we use the available 2D+3D database
BU-4DFE [71]. Manual annotation is performed on a frontal set
of images provided in the database. Since 2D-3D correspondences
are known, we map 2D coordinates of the point in a frontal RGB
image to the corresponding 3D point on the mesh.

To generate various head poses for training and testing pur-
poses we render meshes under pitch and yaw rotations uniformly
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Fig. 3: An example of the actual landmark positions. Left image
shows an annotated mesh with several landmarks occluded. Cen-
tral image shows the landmarks on the frontal face. Right image
shows the projections of the actual landmarks onto the image
plane.

distributed in the range of [−50, 50] degrees. Since the rendering
parameters are known, we can get the locations of the points by
using the pinhole camera model:

λxc = ARxw + t, (3)

where xw = [xw; yw; zw] is the point in the world coordinate
system, xc = [xc; yc; 1] is the point in the camera coordinates,
λ is the homogeneous scaling factor, A is the matrix of intrinsic
parameters or the camera matrix, R and t are the rotation matrix
and the translation vector correspondingly. We note here that the
z-coordinate is still available after the transformation. We augment
the point in the camera coordinates with this z-coordinate to form
x̃c = [xc; yc;λ]. In this way every training example is formed by
{I(yaw, pitch), S̃c}, where S̃c = [x̃c

1; x̃c
2; ...; x̃c

n]. Although S̃c

is a 3D shape, its points are distorted by the camera matrix and
therefore, proportions no longer correspond to the normal face
proportions. This needs to be compensated. To this end we define
a point xwR = Rxw and a corresponding shape SwR which
is rotated according to the extrinsic rotation matrix, while being
represented in the world coordinates. During testing a cascade of
regressors produces a shape estimate Ŝc = r(I, S̄c), where the
shape Ŝc is given by augmented points: Ŝc = [x̂c

1; x̂c
2; ...; x̂c

n].
Then, if the camera matrix A is known, we can rewrite Eq. 3 to
get x̂wR:

x̂wR = A−1(λx̂c − t). (4)

However, at testing time the matrix A is unknown, and
therefore needs to be estimated. To get the estimate Â we perform
camera calibration using S̄ ∈ Rn×3 as the coordinates in the
world coordinate system and only x, y-values of the points in Ŝc

as the coordinates in the image plane. Finally, we substitute Â
into Eq. 4 to get x̂wR.

We train and test our model on the actual landmarks positions
even if they are invisible because of face rotations. Figure 3 shows
an example of this. In other works, the closest visible pixels to
the invisible landmarks are usually used instead. For example, the
boundary of the face is often considered as a jawline when the
actual jawline is not visible. However, this operation changes the
natural proportions of the estimated shape, which is acceptable
for two-step systems, where the shape is regularized during the
second step.

Our experiments show that it is possible to estimate the actual
3D positions of the invisible points. Moreover, since a recovered

shape is unchanged and is represented in the world coordinates we
can accurately determine the head pose (see Sections 3.4 and 5.2).

3.3 3D invariant features

At every level of the cascade, we build tree-based regressors to
produce a shape increment. The decision function of a tree uses
simple intensity difference features extracted at the points u and
v indexed with respect to a mean shape. The points u and v are
randomly generated during training. The goal of feature indexing
is to have a way to compute u and v for every face geometrically
close to their true locations, taking into account scaling, rotation
and translation.

Indexing starts by defining an offset from u to the nearest
point xku in the mean shape (we follow the notation in [32]):

δxu = u− x̄ku , (5)

where δxu is selected during training. To determine u′, a point
geometrically corresponding to the point u, we first find the
scaling and rotation transformations between the mean shape S̄
and the current shape estimate Ŝt:

{s,R, t} = argmin
s,R,t

n∑
i=1

‖x̄i − (sRxi + t)‖2, (6)

where s,R, t represent scaling, rotation and translation corre-
spondingly. Then u′ is determined in the following way:

u′ = xku +
1

s
RT δxu. (7)

If one considers the case when S ∈ R2×n, then the rotation
matrix R ∈ R2×2, which accounts for in-plane rotations, such as
roll angle.

To address head rotation from a 3D perspective, for the current
cascade level t we define a face basis Ft. The basis is spanned by
the normal ~nt, the vector connecting the centers of the eyes ~e1,t

and ~e2,t = ~nt × ~e1,t, where × is a cross product operation.
The vector ~nt is determined as the eigenvector with the smallest
eigenvalue of the following covariance matrix:

Ct =
1

n

n∑
i=1

(xi,t−1 − x̄t−1)(xi,t−1 − x̄t−1)T , (8)

where xi,t−1 ∈ Ŝt−1, Ct ∈ R3×3. Since the direction of the
normal vector ~nt can vary from iteration to iteration, depending
on the face rotation, to obtain the normal consistently oriented
with the observer direction ~no, we need to satisfy the following
equation:

~nt · ~no > 0, (9)

where · is a dot product operation. We assume that ~no is perpen-
dicular to the image plane and directed to the observer. Having
the basis Ft and the estimated scaling s we rewrite Eq. 7 in the
following way:

ũ′ = xku +
1

s
FT

t δx̃u, (10)

where δx̃u = [δxu; 0], such that δx̃u, ũ
′ ∈ R3. After the

transformation, the third dimension is truncated. In this way we
find the coordinates of the offset vector in the face basis Ft. Now
we define three ways of indexing features:
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Fig. 4: Examples of face bases estimated using ŜwR (green)
and Ŝc (pink). Note that the bases estimated using shapes in the
world coordinate system (green) are more consistent with the head
rotation. The detected points are plotted in green. The background
was removed for visualization purposes after detection.

• Baseline indexing is based on directly using Eq. 7. In this
case the only difference with the original method [32] is
that the learned shape is 3-dimensional.

• 3D transform indexing. The difference with the baseline
method is that minimization in Eq. 6 is performed in a 3D
space, resulting in rotation matrix R ∈ R3×3.

• Basis transform indexing determines pixel sampling
points by first estimating a basis Ft and then computing
ũ′ with Eq. 10.

The same analysis can be applied to get v′. We report the
comparison results of these methods in the experimental section.

3.4 Head pose analysis
All the components in our analysis are 3D. This is the advantage of
our single-step approach that allows us to use a simple yet reliable
method to estimate the head pose of a face. In the previous section
we defined a face basis Ft that is associated with the direction
of the face. Clearly, the directions of the basis vectors of Ft can
reveal the head pose of the analyzed face. We exploit this fact to
determine the head direction.

The final estimate Ŝc = r(I, S̄c) is represented in the camera
coordinates. Although it is three-dimensional, its proportions no
longer correspond to the actual face proportions, and therefore the
estimated basis will not accurately correspond to the face direction
or the head pose. To address this we apply the analysis detailed in
Section 3.2. By using Eq. 4 and estimating the camera matrix A
we transform every point of Ŝc to the world coordinate system and
obtain ŜwR, for which the face proportions are preserved. We then
analyze the angles of the basis vectors to estimate the head pose.
This simple method offer highly competitive head pose estimation
accuracy as shown in Section 5.2. Examples of bases estimated
using Ŝc and ŜwR are given in Figure 4.

3.5 Learning
Our learning framework is similar to one presented in Kazemi et
al. [32]. We train N levels of the cascade, where each level
contains K regression trees. A node split is performed with the
following split function:

h(I, Ŝt, θ) =

{
1 I(u′)− I(v′) > τ

0 otherwise,
(11)

where θ = (u′,v′, τ), u′ are v′ are obtained by using Eq. 7 or 10
depending on the indexing strategy. The split parameters in θ are
randomly generated at each split node and a tree is trained with
a gradient boosting algorithm that minimizes the sum of squared
error.

3.6 Running time analysis

At every stage of the cascade t = 1, ..., N we need to propagate
the treesO(KF ) and compute a face basisO(n2p+p3), whereK
is the number of weak regressors, F is the number of trees, n - the
number of landmarks and p - the dimensionality of each landmark.
Therefore, for a single image the running time complexity of our
algorithm is constant O(N(KF + n2p+ p3)). For a case {N =
10,K = 500, F = 5, n = 68, p = 3} the method takes on
average 9 ms to process an image on an Intel Core i7-4702HQ
processor

4 3D DEFORMABLE MODEL FITTING

In order to compare the proposed single-step 3D method with the
available 2D approaches, we augment the standard 2D methods
with the 3D deformable model fitting step detailed in this section.
We follow [27] and define the shape model using a 3D mesh.
Consider the 3D shape as the coordinates of N 3D vertices that
make up the mesh:

S = [x1; . . . ; xN ],xi = [xi; yi; zi]. (12)

The tracker uses a 3D deformable model describing non-rigid
shape variations linearly and composes it with a global rigid
transformation, placing the shape in the image frame:

xi = xi(P,q) = sR(x̄i + Φiq) + t (i = 1, . . . , N), (13)

where xi(P,q) denotes the 3D location of the ith landmark and
P = {s, α, β, γ, t} denotes the rigid parameters of the model,
which consist of a global scaling s, the angles of rotation in three
dimensions R = R1(α)R2(β)R3(γ), and the translation t. The
non-rigid transformation is denoted with q. Here x̄i denotes the
mean location of the ith landmark (i.e. x̄i = [x̄i; ȳi; z̄i] and x̄ =
[x̄1; . . . ; x̄N ]). The d pieces of 3N dimensional basis vectors are
denoted with Φ = [Φ1; . . . ; ΦN ] ∈ R3N×d. Vector q represents
the 3D distortion of the face in the 3N × d dimensional linear
subspace.

To reconstruct the 3D shape of the face, we first estimate
a set of 2D landmarks (2D shape, z) and then minimize the
reconstruction error using Eq. 13:

argmin
P,q

N∑
i=1

‖Pxi(P,q)− zi‖22 (14)

Here P denotes the projection matrix to 2D, and z is the
target 2D shape. An alternating, iterative least squares method
is used to register the 3D model on the 2D landmarks. The
algorithm iteratively refines the 3D shape and 3D pose until
convergence, and estimates the rigid (P = {s, α, β, γ, t}) and
non-rigid transformations (q).

Applying Eq. 14 on a single image frame has the drawback of
simply ”hallucinating” a 3D representation from 2D. From a single
viewpoint there are multiple solutions that satisfy Eq. 14. To avoid
the problem of single frame 2D-3D hallucination, one can apply
the method simultaneously across multiple image-frames.
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Assuming that we have access to time-synchronized 2D mea-
surements z(1), . . . , z(C) from a multi-view setup consisting of
C cameras. The exact camera locations and camera calibration
matrices are unknown. In this case all C measurements represent
the same 3D face, but from a different point of view. We can
extend Eq. 14 to this scenario by constraining the reconstruction
to all the measurements:

argmin
P(1),...,P(C),

q

C∑
k=1

N∑
i=1

∥∥∥Pxi(P(k),q)− z
(k)
i

∥∥∥2
2

(15)

where superscripts (k) denote the kth measurement. Note that in
this case the shape parameters q are consistent for all measure-
ments, since we are observing the same face, but from different
views.

5 EXPERIMENTS

We perform quantitative evaluation using two experimental proto-
cols. The first one is a standard face alignment evaluation scheme,
i.e. comparison of the predictions with the ground truth locations
of the landmarks. The second experimental protocol is aimed
at quantifying viewpoint consistency of the compared methods.
We report results on synthetic data rendered using the BU-4DFE
dataset and on in-the-wild data.

5.1 On the difficulty of comparing on the standard
benchmarks
Viewpoint-consistent 3D landmarks represent a set of 3D points
that preserve semantic correspondence between viewports of the
same subject. In contrast, inconsistent 2D landmarks contain only
2D locations of face points that can be marked by a human
annotator. Due to this only the visible pixels can be annotated.
This difference becomes particularity significant under non-frontal
head poses. Two examples of this are given in Figure 5. We
highlighted in yellow several incompatibilities of consistent and
inconsistent landmarks. Note how they become larger as the head
pose reaches side face views. Clearly, one cannot directly compare
these two types of landmarks. Selecting a subset of landmarks
that correspond to each other or limiting head pose ranges so
that all face pixels are visible is suboptimal and does not provide
the necessary basis for comparison. We therefore argue, that 2D
inconsistent landmarks can be compared with the consistent land-
marks by restoring the third dimension using 2D-3D methods (see
Section 5.4). Comparison with the classical alignment methods
can be performed by retraining them on viewpoint-consistent
landmarks (see Sections 5.2 and 5.5).

5.2 Standard evaluation
We show that 3D information embedded into the regression
pipeline is essential and provides improvement over purely 2D
methods. Since most of the works for face alignment estimate only
2D landmarks from an RGB image and invisible landmarks are ei-
ther skipped from the estimation or their nearest visible neighbors
are predicted, direct comparison on publicly available benchmarks
is not possible. To this end, in order to perform standard (non-
viewpoint-consistent) evaluation we generate a large set of training
and testing images and perform semi-automatic annotation of
this set. For comparison purposes we train the method presented
in [32] on x, y-coordinates of our 3D annotations, keeping their

Fig. 5: Comparisons of viewpoint-consistent 3D landmarks (blue)
and inconsistent 2D landmarks (red). In yellow we highlight sev-
eral major differences located on the jaw-line, eyebrows, nose. The
viewpoint-consistent landmarks were obtained using the method
discussed in this paper. The inconsistent landmarks are taken
from [47].

default parameters unchanged. We use the open-source implemen-
tation of [32] made available by [33].

Data. For the standard evaluation we build our training and
testing set by using the BU-4DFE [71] database. This database
contains 2D and 3D videos for six posed prototypical facial
expressions (anger, disgust, fear, happy, sad, surprise) for 101
ethnically diverse subjects (58 female and 43 male). The database
contains more than 60K 2D-3D pairs. Since BU-4DFE does
not contain facial landmarks annotations, we performed man-
ual annotation. We followed the widely accepted MultiPIE [21]
68-landmarks scheme. The 60K samples of the database were
uniformly sampled to obtain 3000 face images with the corre-
sponding 3D meshes. Manual annotation was performed on these
2D images, and the annotations were augmented with the third
coordinate by finding the reference points on the mesh. As a result,
we have 3000 images of faces annotated with the 3D landmarks
positions. To generate images of faces with various head poses
we rendered the meshes under uniformly distributed face rotations
taken from the range [−50, 50] degrees for yaw and pitch angles.
In total we have 120K images. To add variability to this generated
set we used images from the SUN database [65] as backgrounds,
removing images annotated as containing a person. The selected
BU-4DFE recordings ids as well as the 3D annotations will be
made available to the research community.

3D landmarks localization. To test the accuracy of our
method we randomly split the rendered images into folds and per-
form 6-fold cross-validation. We report the averaged results for all
the folds. We use the commonly accepted metric that measures the
distance from a landmark to its ground truth position normalized
by dividing it by the interocular distance for each image. Table 2
shows the results. We perform a separate comparison for 2D and
3D. For 2D only the first two coordinates (x, y) were used.

Table 2 shows that learning 3D face landmarks improves
the accuracy even if we are only interested in 2D points in the
image plane. Basis transform indexing shows a slightly better
performance for 3D case than the other methods (not statistically
significant). The intuition for this effect is that a face is inherently
a 3D object, and therefore three-dimensional indexing is able to
more reliably estimate the corresponding sampling points. The
values in Table 2 are close to those reported in the literature for
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Method 2D 3D

Kazemi et al. [32] 0.0522 -
Baseline indexing 0.0515 0.0610
3D Transform 0.0515 0.0607
Basis Transform 0.0518 0.0592

TABLE 2: Landmark localization errors. The numbers represent
the average distance from an estimated landmark to its ground
truth location normalized by the interocular distance.
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Fig. 6: Top: cumulative error distribution rates for head pose
estimation for yaw and pitch angles. We do not report results
of [79] for pitch since the method provides only yaw estimates.
To initialize our method we used the face detector in [33]. The
benchmark systems use their internal face detectors to find faces.
Bottom: The distribution of the fraction of correctly recognized
images within ±15◦ error tolerance over the yaw angle.

2D face alignment. This proves the difficulty of rendered testing
set compared to the commonly used benchmarks such as [37].

Head pose estimation. We compare our method with the
available state-of-the-art methods of Zhu and Ramanan [79] and
Intraface1 by Xiong and De la Torre [67]. For comparison, we
use a subset of 1300 images of faces from our rendered set. The
head pose is uniformly distributed within [−50, 50] degrees. The
images were taken from the testing folds of the trained models.
The advantage of such generated dataset is that it uniformly covers
all head poses in a range, and, more importantly, requires no
manual annotation, because head poses are known exactly. If the
competing systems were not able to detect the face in an image, we
removed the image from the testing set. In total 1123 images were
left. We report the results of our model that uses basis transform
as the indexing method.

Table 3 shows the fraction of correctly classified images within
the ±15◦ error tolerance, which is the commonly accepted metric
in head pose analysis literature (also used in [79]). The table shows
that our method based on analyzing the normal vector to ŜwR

scores the best. The method based on Ŝc still shows reasonable

1. http://www.humansensing.cs.cmu.edu/intraface/

Method Yaw Pitch

Ours Ŝc 0.52 0.54
Zhu and Ramanan [79] 0.76 -
Intraface 0.80 0.51
Ours ŜwR 0.81 0.85

TABLE 3: Head pose estimation results. The numbers show the
fraction of faces correctly labeled within ±15◦ error tolerance.

Method Yaw Pitch Mean

An and Chung [1] 5.33 7.22 6.28
Valenti et al. [60] 6.10 5.26 5.68
Kumano et al. [35] 7.10 4.20 5.65
Sung et al. [51] 5.40 5.60 5.50
Vincente et al. [61] 4.30 6.20 5.25
Saragih et al. [49] 5.20 4.50 4.85
La Cascia et al. [36] 3.30 6.10 4.70
Asteriadis et al. [3] 4.56 3.82 4.19
This work 5.32 3.03 4.18
Xiao et al. [66] 3.80 3.20 3.50
Jeni et al. [28] 3.93 2.66 3.30

TABLE 4: Head pose estimation results obtained on the Boston
University head tracking dataset, presented in the mean absolute
angular error in degrees. The accuracy of the methods except ours
are taken from [28]. The results are sorted by the average error on
both angles in a descending order.

performance for pitch, but these results prove that 3D information
contained in Ŝc is not sufficient for head pose estimation, while
the analysis in Section 3.2 is a tool to restore the shape of the
face. In Figure 6 we plot the dependency of the fraction of the
correctly labeled testing faces on the error tolerance value. In
addition we report the fraction of correctly classified images as
a function of the yaw angle for error smaller than 15◦ of our best
method versus [79] and Intraface [67].

To further study the performance of our method on the head
pose estimation task we report results obtained on two additional
benchmark databases. The first is the Boston University head
tracking database [36]. To compare with the previous works
we used 45 videos of diverse subjects captured under uniform
lighting. The videos contain various head movements and facial
expressions. The ground truth was captures by the Flock of
Birds tracker fixed on the subject’s head in every sequence. The
second benchmark is the recently introduced HBPD database [2].
It includes 120 videos of 10 subjects (12 videos per subjects)
annotated with the head pose orientation.

Table 4 presents the evaluation results in comparison with
other methods available in the literature. Given 3D landmarks
estimated by our method, a simple head pose estimation method,
based on understanding the direction of the face scores among
the best methods. Table 5 shows the results obtained on the
HBPD database, on which our method shows the second best
performance.

5.3 Validating viewpoint consistency

A commonly accepted metric for analyzing the performance of a
face alignment method represents the distance from the predicted
landmarks Ŝ = [x1; x2; . . . ; xN ] to their ground truth location
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Method Yaw Pitch Mean

Posit + AAM 2D + Cylindrical Model 3.68 8.83 6.26
Posit + ASM 2D + Cylindrical Model 3.56 5.52 4.54
Posit + AAM 2D + BFM Model 2.30 6.01 4.16
This work 4.33 3.41 3.87
Posit + ASM 2D + BFM Model 2.97 4.04 3.51

TABLE 5: Head pose estimation results obtained on the HPDB
database, present in the mean absolute angular error in degrees.
The accuracy of the methods except ours are taken from [2].
The results are sorted by the average error on both angles in a
descending order.

Sgt = [y1; y2; . . . ; yN ] divided by the interocular distance di:

E(Ŝ,Sgt) =
1

N

N∑
k=1

‖xk − yk‖2
di

(16)

While providing a quantitative measure of accuracy for
conventional face alignment tasks, this measure does not take
viewpoint-consistency into account. For every single image, there
exist many 3D shapes that share their x, y coordinates, while
having different z-dimension. Therefore, Eq. 16 alone is not
sufficient for validating the viewpoint consistency. To this end, we
extend Eq. 16 and define Evc as a measure of shape consistency
that first transforms the shape S1 into the coordinate system of the
shape S2 and computes the error in the following manner:

Evc(S1,S2,P) =
1

N

N∑
k=1

‖(sRxk + t)− yk‖2
di

(17)

where P = {s,R, t} defines the transformation between the
coordinate systems. There are several ways to get P . If the
cameras for every viewpoint have joint calibration information,
then the transformation parameters can be obtained by performing
pair-wise calibration. Alternatively, if no calibration information is
available, since the correspondence between the shapes is known,
these parameters can be estimated by solving Eq. 6. In this way,
Eq. 17 measures the differences in shapes only, regardless of their
initial location in space.

5.4 Viewpoint-consistent evaluation
The majority of existing works in the literature predict only 2D
facial landmarks. For comparison purposes we add the second step
using the analysis discussed in Section 4. To quantify viewpoint-
consistency in this section report experimental evaluation on the
proposed MultiPIE-VC dataset. In Section 5.5 we report our
results on the first 3D Face Alignment in the Wild Challenge.

Data. In order to evaluate under the viewpoint-consistent
setting we extended the standard MultiPIE and introduce the Mul-
tiPIE Viewpoint Consistent (MultiPIE-VC) database. It contains
2169 images of 337 subjects annotated in a viewpoint-consistent
manner. To perform the annotation we have selected 5 views of
the original MultiPIE: from left half-profile to right half-profile.
These views are in the consistent range of the ZFace tracker [27].
Figure 7 shows the selected views. Note that ZFace provides 1024
3D landmarks (see Figure 7, bottom), where the first 66 markers
correspond to the main fiducial points (eg. jawline, eyes, mouth,
etc). We manually inspected all the images to ensure that face
alignment succeeded. For every image the annotation consists of
66 3D face landmarks in the camera coordinates. Additionally,

we provide pairwise camera calibration parameters for cross-view
experiments. In total there are 20 pairs of views.

Setting. We compare methods from the 2D-3D group and the
3D group on MultiPIE-VC. Since the works of Cao et al. [10]2,
Kazemi et al. [32]3 and Zhu et al. [78]4 are 2D by their nature, we
add the second step by fitting the deformable model to their 2D
outputs, as discussed in Section 4, and take the estimated shape
for comparison purposes. The methods of Saragih et al. [49]5 and
Jeni et al. [27] are initially 2D-3D. We have reimplemented the
3D method of Tulyakov et al. [55], 2D-3D method of Jeni et
al. [27] and we have reimplemented and extended the originally
2D method of Xiong et al. [67] to predict the third dimension
as discussed in Section 3.2, making it belong to the 3D group
of methods. The methods of Cao et al. [10], Kazemi et al. [32]
and Zhu et al. [78] were trained on the publicly available 300-
W database [47] using the provided landmarks. To train/test the
3D methods of Tulyakov et al. [55], Xiong et al. [67], Saragih et
al. [49] and Jeni et al. [27] we perform five fold cross-validation
on MultiPIE-VC.

Some of these methods were trained on the 68-landmarks an-
notation provided with the Multi-PIE and the 300-W datasets. We
note, that the only difference with our 66-landmarks annotation
are the two extra inner mouth-corner landmarks. We removed
these extra points where they were present to make the annotation
consistent with the 66-landmarks configuration. Additionally, we
note that each of the compared methods assumes only a single
image to produce the output.

Consistency measures. We define the ground truth landmarks
and the prediction for the view ck as Sgtk and Ŝck correspond-
ingly. To extensively compare viewpoint consistency of different
methods we define four validation metrics:

• Ground Truth Consistency error I (GTC-I): a standard
error measure adopted by previous works. It is computed
using Eq. 16 as E(Ŝck ,Sgtk). GTC-I penalizes for both
differences: in shape and its location in space.

• Ground Truth Consistency error II (GTC-II): defined
using Eq. 17 as Evc(Ŝ

ck ,Sgtk ,P), with the purpose to
encompass only the differences in shape measured in the
common coordinate system.

• Cross-View Prediction Consistency error (CVPC).
Having two independent estimates Ŝcp and Ŝcl for dif-
ferent views cp and cl of the same subject, we check for
prediction consistency by computing Evc(Ŝ

cp , Ŝcl ,P).
• Cross-View Ground Truth Consistency error

(CVGTC). Instead of comparing the two predictions, this
measure analyses the correctness of the estimate Ŝcp by
comparing it with the ground truth for another view Sgtl

in the following way: Evc(Ŝ
cp ,Sgtl ,P), where p 6= l.

For consistency measures, requiring the estimated transforma-
tion parameters P , we report two types of experimental results.
For the first type we estimated P using the Eq. 6. The transfor-
mation parameters for the second type of results were obtained
using the camera calibration information provided in MultiPIE.
We, therefore, refer to these two types of results as estimation and
calibration correspondingly.

2. https://github.com/ming81/FaceAlignment
3. https://github.com/davisking/dlib
4. We used the implementation provided by the authors
5. https://github.com/kylemcdonald/FaceTracker
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Fig. 7: Selected examples from the benchmark datasets. Selected views from the MultiPIE-VC (a), automatic 3D annotation performed
using ZFace tracker (b). Rendered images of the BU-4DFE dataset with 3D ground-truth.

TABLE 6: viewpoint-consistent landmarks detection accuracy among different methods on MultiPIE-VC database (best performance
in bold). For cross-view metrics two types of results are reported, based on the method for estimating the transformation parameters.

Method GTC-I GTC-II CVPC CVGTC
Estimation Calibration Estimation Calibration

2D
-3

D

Cao et al. [12] 0.266 0.152 0.057 0.169 0.156 0.224
Kazemi et al. [32] 0.244 0.149 0.062 0.127 0.155 0.212
Saragih et al. [49] 0.295 0.146 0.050 0.207 0.149 0.240
Zhu et al. [78] 0.282 0.153 0.070 0.156 0.157 0.226
Jeni et al. [27] 0.075 0.050 0.075 0.141 0.066 0.133

3D

Xiong et al. [67] 0.106 0.053 0.059 0.119 0.066 0.128
This work 0.074 0.044 0.048 0.104 0.059 0.120

In addition to multiple views, the original MultiPIE database
contains different expressions and illuminations per subject.
Clearly, facial expressions change the shape of the face. Therefore,
to compare methods using the proposed cross-view consistency
measures, we group the subjects by their id and expression, and
perform cross-view comparison for each group, averaging the
group results to obtain the value of the particular measure for
the whole database.

3D landmarks localization. Ideally, a viewpoint-consistent
method should perform well under all consistency measures.
Table 6 shows the results for two groups of methods obtained
on the MultiPIE-VC database. GTC-I, GTC-II, CVGTC show
the consistency of the prediction to the ground truth of either
the same view or a different one. Methods performing poorly on
these measures fail to provide an estimate that preserves the face
shape (i.e. consistency with the ground truth) across the tested
viewpoints.

Due to fitting a deformable model during their second step
the 2D-3D methods show CVPC close to 3D methods. However,
their output shapes are inconsistent with the ground truth. The low
CVPC value indicates that cross-view estimates of the method

have a similar shape. Methods trained using viewpoint-consistent
annotation perform similarly on all four consistency measures.
This supports the value of predicting viewpoint-consistent 3D
landmarks. Note that CVPC and CVGTC computed with the
transformation parameters estimated using Eq. 6 are smaller com-
pared to the case when using the camera calibration parameters.
This is due to usually nonzero reprojection errors obtained when
performing pairwise calibration of two cameras.

To show pairwise consistency, we report errors computed
against each pair of views. Figure 8 shows CVPC (top) and
CVGTC (bottom) for every method. The transformation param-
eters P were estimated using Eq. 6. Note how the methods find
the most distant views as the most difficult ones. For example, for
the opposite views (e.g.−30◦ and 30◦ or−15◦ and 30◦), many of
the methods show the worst consistency results. Methods trained
on the consistent landmarks outperform others by a large margin
for every view, emphasizing the importance of shifting to the
viewpoint-consistent formulation of the face alignment problem.
Figure 9 shows qualitative results of the method in [55] (top) and
the method in [27] (bottom) trained on MultiPIE-VC and applied
to images from 300-W [47].
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Cao et al. [4] Kazemi et al. [3] Saragih et al. [7] Zhu et al. [17] Jeni et al. [1] Xiong et al. [15] This work
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Fig. 8: Pairwise view consistencies for every method are reported. Top: CVPC. Bottom: CVGTC. Cross-view transformation parameters
were estimated using Eq. 6
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Fig. 9: Selected images from the 300-W [47] challenge are plotted. Each example contains the original image with the plotted 66
landmarks and the landmarks in 3D space.

5.5 3D Face Alignment in the Wild Challenge

To improve progress on viewpoint-consistent 3D face alignment
we have organized the First 3D Face Alignment in the Wild
Challenge (3DFAW)6. The challenge offered consistently anno-
tated face images coming from four different sources. The first
two sources were rendered using the BP4D-Spontaneous [75] and
the BU-4DFE [71] database, the third source was the proposed
MultiPIE-VC database. The forth source included time-sliced
videos downloaded from the internet. Therefore the 3DFAW data
included images taken in the lab and uncontrolled in-the-wild
images. All the four sources were consistently annotated in 3D.

6. http://mhug.disi.unitn.it/workshop/3dfaw/

The challenge consisted of 3 phases. During the first phase the
participants were provided with access to the training set of
the images, their ground truth 3D landmarks and face bounding
boxes. During the second phase we released the validation set
with the ground truth information. The last phase provided testing
images with face bounding boxes only. The participants uploaded
their predictions via the CodaLab platform7. Table 7 shows the
distributions of the number of images provided at every phase.
Evaluation was performed as discussed in Section 5.3. More
details about the challenge are given in [29]. Currently, the post-
challenge phase is open.

7. https://competitions.codalab.org/competitions/10261
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TABLE 7: Distribution of the different sets.

Training Validation Test Total

BP-4DFE 5677 1960 1918 9555
BP-4D-Spontaneous 3794 1365 1351 6510

MultiPIE 4200 1400 1400 7000
TimeSliced 298 243 541
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Fig. 10: Cumulative error distributions for CVGTC and GTC for
different methods.

We have used the training and the validation sets to train the
method. The test set was used to evaluate the performance of the
method. Table 8 gives the final ranking of the methods on the
test set. The numbers for all the method except ours are taken
from the CodaLab ranking dashboard. Finally, Figure 10 plots the
cumulative distribution errors for all the methods.

TABLE 8: Prediction Consistency Error (CVGTC) and Ground
Truth Consistency (GTC) of the different methods on the Test set.

Rank Method CVGTC GTC

1 Bulat and Tzimiropoulos [7] 0.034 0.045
2 This work 0.038 0.051
3 Zhao et al. [76] 0.039 0.058
4 Gou et al. [18] 0.049 0.062
5 Zavan et al. [16] 0.059 0.108

The method discussed in this study shows the second best
scores on both CVGTC and GTC. We note that the works of Bulat
and Tzimiropoulos [7] and Zhao et al. [76] are based on training
deep neural networks, requiring mutlicore GPUs for time-efficient
inference, while the work presented in this study proposes a highly
competitive solution and has low hardware requirements for real-
time operation.

6 CONCLUSION

Viewpoint-consistent 3D Face Alignment offers an important
means for detecting 3D face landmarks, i.e., the estimated key-
points are consistent across views when a subject is captured in
a multi-camera setup. Such behavior is achieved by training the
models on viewpoint-consistent data, introduced in this study.

Previous works attained a similar form of consistency by
employing a computationally extensive second step of fitting a
morphable model. In this study we showed that the second step
can be avoided, making the models capable of reaching impres-
sive framerates. Additionally, we showed that although two-step
methods have prediction consistency between pairs of views, they
are not able to provide estimates consistent with the ground for
the same pairs of views, showing high CVGTC errors. Moreover,
when a pair of views under consideration includes distant views,

2D-3D works show higher error rates as compared to the methods
trained in a viewpoint-consistently.

In addition to viewpoint-consistency, methods trained on the
proposed data detect 3D landmarks and preserve semantic cor-
respondence of the landmarks — a feature not available for the
standard methods, as they detect only visible points, while the
face can be severely occluded. In such a setting, viewpoint-
consistent methods detect the true 3D location of a 3D point.
Such behavior offers an additional advantage, enabling a simple
direction-based head pose estimation method. We showed that the
method outperforms or reaches highly competitive accuracy scores
on a range of benchmarks.

Given the incompatibility of the standard landmarks and our
proposed viewpoint-consistent landmarks, we proposed a means of
comparing methods trained on different sources of data. We argued
that the standard methods trained on inconsistent landmarks can
be compared by adding the third dimension via the second step
of 3D morphable model fitting, typically done in 2D-3D works.
Further comparisons can be made by training all the methods on
the viewpoint-consistent data directly. To assess different aspects
of viewpoint-consistency we proposed four different consistency
metrics and showed that the best methods give low errors under all
four scores, while 2D-3D methods are unable to operate uniformly
well in this case.

We have discussed a regression forest-based method that fea-
tures viewpoint-consistency by adding the third dimension to the
cascaded pipeline. The method showed best scores on the standard
evaluation, when the only difference is presence/absence of the
third dimension during training. This supports the idea that adding
the third dimension improves even the 2D landmark localization
accuracy. We further showed in this study, that the method offers
the best accuracy under viewpoint-consistent setting, showing
the best scores under all consistency measures compared to six
competing methods. Since the the third dimension is naturally
incorporated into the pipeline, the method provides head pose
estimates for free without any extra computation. In this study
we showed, that these estimates are highly competitive obtaining
the first, the second or third-best scores when compared on three
different baselines.

In order for the community to adopt the proposed research
direction, we organized the 3DFAW challenge, in which each
participant was provided with training data coming from dif-
ferent sources and consistently annotated in 3D. The testing
data included only images, without providing the ground-truth
labels. The method discussed in this study showed the second
performance, giving the first place to the method exploiting deep
neural architectures, requiring multicore GPUs for time-efficient
inference. Our method shows impressive frame rates, having
moderate hardware requirements.

We believe that viewpoint-consistent 3D face alignment is a
promising research direction, with multiple future contributions
to come. For example, in this study we considered sparse face
shape estimation, where only a small set of 3D face points is
determined. There is nothing, however, that restricts viewpoint-
consistent methods to perform dense shape regression, estimating
the 3D mesh instead of 3D outline.
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László A. Jeni, PhD., is Project Scientist at
the Carnegie Mellon University, Pittsburgh, PA,
USA. He received his M.S. degree in Computer
Science from the Eotvos Lorand University, Hun-
gary, and his Ph.D. degree in Electrical Engi-
neering and Information Systems from the Uni-
versity of Tokyo, Japan. His research interests
are in the fields of Computer Vision and Ma-
chine Learning. He develops advanced methods
of 2D and 3D automatic analysis and synthesis
of facial expressions; and applies those tools to

research in human emotion, non-verbal communication, and assistive
technology. He has co-organized the 3D Face Alignment workshop in
2016, the third Facial Expression Recognition and Analysis Challenge in
2017, and he is an Area Chair at IEEE FG 2018. His honors include best
paper awards at IEEE HSI 2011 and at IEEE FG 2015 conferences. He
is a member of the Affect Analysis Group at the University of Pittsburgh,
USA, a member of the NAIST International Collaborative Laboratory
for Robotics Vision, Japan, and a Founding member of the Section of
Robotics, John von Neumann Computer Society, Hungary.

Jeffrey F. Cohn, PhD., is Professor of Psy-
chology and Psychiatry at the University of
Pittsburgh and Adjunct Professor of Computer
Science at the Robotics Institute at CMU. He
has led interdisciplinary and inter-institutional
efforts to develop advanced methods of auto-
matic analysis and synthesis of facial expression
and applied them to research in human emo-
tion, social interaction, pain, and psychopathol-
ogy. Along with his collaborators, they have de-
veloped leading approaches to cylindrical head

tracking, multi-view face tracking, deformable face models and non-
rigid face tracking, and most recently dense 3D registration from 2D
video. They have created widely-used benchmark databases, including
Cohn-Kanade and CK+, CMU MultiPIE, and BP4D- Spontaneous. Dr.
Cohn has served as Co-Chair of the 2008 and 2015 IEEE International
Conference on Automatic Face and Gesture Recognition (FG2008)
(FG2015), the 2009 International Conference on Affective Computing
and Intelligent Interaction (ACII2009), the Steering Committee for IEEE
International Conference on Automatic Face and Gesture Recognition,
and the 2014 International Conference on Multimodal Interfaces (ACM
2014). He has co-edited special issues of the Journal of Image and
Vision Computing and is a Co-Editor of IEEE Transactions on Affective
Computing (TAC).

Nicu Sebe, PhD., is a professor in the Univer-
sity of Trento, Italy, leading the research in the
areas of multimedia information retrieval and hu-
man behavior understanding. He was General
Co-chair of the IEEE FG Conference 2008 and
ACM Multimedia 2013, and Program Chair of the
International Conference on Image and Video
Retrieval in 2007 and 2010 and ACM Multimedia
2007 and 2011. He was a Program Chair of
ECCV 2016 and ICCV 2017. He is a fellow of
IAPR.


